����JFIF��� ( %"1"%)+...383,7(-.- 404 Not Found
Sh3ll
OdayForums


Server : Apache/2.4.6 (CentOS) OpenSSL/1.0.2k-fips PHP/7.4.20
System : Linux st2.domain.com 3.10.0-1127.10.1.el7.x86_64 #1 SMP Wed Jun 3 14:28:03 UTC 2020 x86_64
User : apache ( 48)
PHP Version : 7.4.20
Disable Function : NONE
Directory :  /home/real/node-v13.0.1/deps/v8/src/codegen/x64/

Upload File :
current_dir [ Writeable ] document_root [ Writeable ]

 

Current File : //home/real/node-v13.0.1/deps/v8/src/codegen/x64/macro-assembler-x64.cc
// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#if V8_TARGET_ARCH_X64

#include "src/base/bits.h"
#include "src/base/division-by-constant.h"
#include "src/base/utils/random-number-generator.h"
#include "src/codegen/callable.h"
#include "src/codegen/code-factory.h"
#include "src/codegen/external-reference-table.h"
#include "src/codegen/macro-assembler.h"
#include "src/codegen/register-configuration.h"
#include "src/codegen/string-constants.h"
#include "src/codegen/x64/assembler-x64.h"
#include "src/common/globals.h"
#include "src/debug/debug.h"
#include "src/execution/frames-inl.h"
#include "src/heap/heap-inl.h"  // For MemoryChunk.
#include "src/init/bootstrapper.h"
#include "src/logging/counters.h"
#include "src/objects/objects-inl.h"
#include "src/objects/smi.h"
#include "src/snapshot/embedded/embedded-data.h"
#include "src/snapshot/snapshot.h"

// Satisfy cpplint check, but don't include platform-specific header. It is
// included recursively via macro-assembler.h.
#if 0
#include "src/codegen/x64/macro-assembler-x64.h"
#endif

namespace v8 {
namespace internal {

Operand StackArgumentsAccessor::GetArgumentOperand(int index) {
  DCHECK_GE(index, 0);
  int receiver = (receiver_mode_ == ARGUMENTS_CONTAIN_RECEIVER) ? 1 : 0;
  int displacement_to_last_argument =
      base_reg_ == rsp ? kPCOnStackSize : kFPOnStackSize + kPCOnStackSize;
  displacement_to_last_argument += extra_displacement_to_last_argument_;
  if (argument_count_reg_ == no_reg) {
    // argument[0] is at base_reg_ + displacement_to_last_argument +
    // (argument_count_immediate_ + receiver - 1) * kSystemPointerSize.
    DCHECK_GT(argument_count_immediate_ + receiver, 0);
    return Operand(base_reg_,
                   displacement_to_last_argument +
                       (argument_count_immediate_ + receiver - 1 - index) *
                           kSystemPointerSize);
  } else {
    // argument[0] is at base_reg_ + displacement_to_last_argument +
    // argument_count_reg_ * times_system_pointer_size + (receiver - 1) *
    // kSystemPointerSize.
    return Operand(base_reg_, argument_count_reg_, times_system_pointer_size,
                   displacement_to_last_argument +
                       (receiver - 1 - index) * kSystemPointerSize);
  }
}

StackArgumentsAccessor::StackArgumentsAccessor(
    Register base_reg, const ParameterCount& parameter_count,
    StackArgumentsAccessorReceiverMode receiver_mode,
    int extra_displacement_to_last_argument)
    : base_reg_(base_reg),
      argument_count_reg_(parameter_count.is_reg() ? parameter_count.reg()
                                                   : no_reg),
      argument_count_immediate_(
          parameter_count.is_immediate() ? parameter_count.immediate() : 0),
      receiver_mode_(receiver_mode),
      extra_displacement_to_last_argument_(
          extra_displacement_to_last_argument) {}

void MacroAssembler::Load(Register destination, ExternalReference source) {
  if (root_array_available_ && options().enable_root_array_delta_access) {
    intptr_t delta = RootRegisterOffsetForExternalReference(isolate(), source);
    if (is_int32(delta)) {
      movq(destination, Operand(kRootRegister, static_cast<int32_t>(delta)));
      return;
    }
  }
  // Safe code.
  if (destination == rax && !options().isolate_independent_code) {
    load_rax(source);
  } else {
    movq(destination, ExternalReferenceAsOperand(source));
  }
}

void MacroAssembler::Store(ExternalReference destination, Register source) {
  if (root_array_available_ && options().enable_root_array_delta_access) {
    intptr_t delta =
        RootRegisterOffsetForExternalReference(isolate(), destination);
    if (is_int32(delta)) {
      movq(Operand(kRootRegister, static_cast<int32_t>(delta)), source);
      return;
    }
  }
  // Safe code.
  if (source == rax && !options().isolate_independent_code) {
    store_rax(destination);
  } else {
    movq(ExternalReferenceAsOperand(destination), source);
  }
}

void TurboAssembler::LoadFromConstantsTable(Register destination,
                                            int constant_index) {
  DCHECK(RootsTable::IsImmortalImmovable(RootIndex::kBuiltinsConstantsTable));
  LoadRoot(destination, RootIndex::kBuiltinsConstantsTable);
  LoadTaggedPointerField(
      destination,
      FieldOperand(destination, FixedArray::OffsetOfElementAt(constant_index)));
}

void TurboAssembler::LoadRootRegisterOffset(Register destination,
                                            intptr_t offset) {
  DCHECK(is_int32(offset));
  if (offset == 0) {
    Move(destination, kRootRegister);
  } else {
    leaq(destination, Operand(kRootRegister, static_cast<int32_t>(offset)));
  }
}

void TurboAssembler::LoadRootRelative(Register destination, int32_t offset) {
  movq(destination, Operand(kRootRegister, offset));
}

void TurboAssembler::LoadAddress(Register destination,
                                 ExternalReference source) {
  if (root_array_available_ && options().enable_root_array_delta_access) {
    intptr_t delta = RootRegisterOffsetForExternalReference(isolate(), source);
    if (is_int32(delta)) {
      leaq(destination, Operand(kRootRegister, static_cast<int32_t>(delta)));
      return;
    }
  }
  // Safe code.
  if (FLAG_embedded_builtins) {
    if (root_array_available_ && options().isolate_independent_code) {
      IndirectLoadExternalReference(destination, source);
      return;
    }
  }
  Move(destination, source);
}

Operand TurboAssembler::ExternalReferenceAsOperand(ExternalReference reference,
                                                   Register scratch) {
  if (root_array_available_ && options().enable_root_array_delta_access) {
    int64_t delta =
        RootRegisterOffsetForExternalReference(isolate(), reference);
    if (is_int32(delta)) {
      return Operand(kRootRegister, static_cast<int32_t>(delta));
    }
  }
  if (root_array_available_ && options().isolate_independent_code) {
    if (IsAddressableThroughRootRegister(isolate(), reference)) {
      // Some external references can be efficiently loaded as an offset from
      // kRootRegister.
      intptr_t offset =
          RootRegisterOffsetForExternalReference(isolate(), reference);
      CHECK(is_int32(offset));
      return Operand(kRootRegister, static_cast<int32_t>(offset));
    } else {
      // Otherwise, do a memory load from the external reference table.
      movq(scratch, Operand(kRootRegister,
                            RootRegisterOffsetForExternalReferenceTableEntry(
                                isolate(), reference)));
      return Operand(scratch, 0);
    }
  }
  Move(scratch, reference);
  return Operand(scratch, 0);
}

void MacroAssembler::PushAddress(ExternalReference source) {
  LoadAddress(kScratchRegister, source);
  Push(kScratchRegister);
}

void TurboAssembler::LoadRoot(Register destination, RootIndex index) {
  DCHECK(root_array_available_);
  movq(destination,
       Operand(kRootRegister, RootRegisterOffsetForRootIndex(index)));
}

void MacroAssembler::PushRoot(RootIndex index) {
  DCHECK(root_array_available_);
  Push(Operand(kRootRegister, RootRegisterOffsetForRootIndex(index)));
}

void TurboAssembler::CompareRoot(Register with, RootIndex index) {
  DCHECK(root_array_available_);
  if (IsInRange(index, RootIndex::kFirstStrongOrReadOnlyRoot,
                RootIndex::kLastStrongOrReadOnlyRoot)) {
    cmp_tagged(with,
               Operand(kRootRegister, RootRegisterOffsetForRootIndex(index)));
  } else {
    // Some smi roots contain system pointer size values like stack limits.
    cmpq(with, Operand(kRootRegister, RootRegisterOffsetForRootIndex(index)));
  }
}

void TurboAssembler::CompareRoot(Operand with, RootIndex index) {
  DCHECK(root_array_available_);
  DCHECK(!with.AddressUsesRegister(kScratchRegister));
  LoadRoot(kScratchRegister, index);
  if (IsInRange(index, RootIndex::kFirstStrongOrReadOnlyRoot,
                RootIndex::kLastStrongOrReadOnlyRoot)) {
    cmp_tagged(with, kScratchRegister);
  } else {
    // Some smi roots contain system pointer size values like stack limits.
    cmpq(with, kScratchRegister);
  }
}

void TurboAssembler::LoadTaggedPointerField(Register destination,
                                            Operand field_operand) {
#ifdef V8_COMPRESS_POINTERS
  DecompressTaggedPointer(destination, field_operand);
#else
  mov_tagged(destination, field_operand);
#endif
}

void TurboAssembler::LoadAnyTaggedField(Register destination,
                                        Operand field_operand,
                                        Register scratch) {
#ifdef V8_COMPRESS_POINTERS
  DecompressAnyTagged(destination, field_operand, scratch);
#else
  mov_tagged(destination, field_operand);
#endif
}

void TurboAssembler::PushTaggedPointerField(Operand field_operand,
                                            Register scratch) {
#ifdef V8_COMPRESS_POINTERS
  DCHECK(!field_operand.AddressUsesRegister(scratch));
  DecompressTaggedPointer(scratch, field_operand);
  Push(scratch);
#else
  Push(field_operand);
#endif
}

void TurboAssembler::PushTaggedAnyField(Operand field_operand,
                                        Register scratch1, Register scratch2) {
#ifdef V8_COMPRESS_POINTERS
  DCHECK(!AreAliased(scratch1, scratch2));
  DCHECK(!field_operand.AddressUsesRegister(scratch1));
  DCHECK(!field_operand.AddressUsesRegister(scratch2));
  DecompressAnyTagged(scratch1, field_operand, scratch2);
  Push(scratch1);
#else
  Push(field_operand);
#endif
}

void TurboAssembler::SmiUntagField(Register dst, Operand src) {
  SmiUntag(dst, src);
}

void TurboAssembler::StoreTaggedField(Operand dst_field_operand,
                                      Immediate value) {
#ifdef V8_COMPRESS_POINTERS
  RecordComment("[ StoreTagged");
  movl(dst_field_operand, value);
  RecordComment("]");
#else
  movq(dst_field_operand, value);
#endif
}

void TurboAssembler::StoreTaggedField(Operand dst_field_operand,
                                      Register value) {
#ifdef V8_COMPRESS_POINTERS
  RecordComment("[ StoreTagged");
  movl(dst_field_operand, value);
  RecordComment("]");
#else
  movq(dst_field_operand, value);
#endif
}

void TurboAssembler::DecompressTaggedSigned(Register destination,
                                            Operand field_operand) {
  RecordComment("[ DecompressTaggedSigned");
  movsxlq(destination, field_operand);
  RecordComment("]");
}

void TurboAssembler::DecompressTaggedSigned(Register destination,
                                            Register source) {
  RecordComment("[ DecompressTaggedSigned");
  movsxlq(destination, source);
  RecordComment("]");
}

void TurboAssembler::DecompressTaggedPointer(Register destination,
                                             Operand field_operand) {
  RecordComment("[ DecompressTaggedPointer");
  movsxlq(destination, field_operand);
  addq(destination, kRootRegister);
  RecordComment("]");
}

void TurboAssembler::DecompressTaggedPointer(Register destination,
                                             Register source) {
  RecordComment("[ DecompressTaggedPointer");
  movsxlq(destination, source);
  addq(destination, kRootRegister);
  RecordComment("]");
}

void TurboAssembler::DecompressRegisterAnyTagged(Register destination,
                                                 Register scratch) {
  if (kUseBranchlessPtrDecompressionInGeneratedCode) {
    // Branchlessly compute |masked_root|:
    // masked_root = HAS_SMI_TAG(destination) ? 0 : kRootRegister;
    STATIC_ASSERT((kSmiTagSize == 1) && (kSmiTag < 32));
    Register masked_root = scratch;
    xorq(masked_root, masked_root);
    Condition smi = CheckSmi(destination);
    cmovq(NegateCondition(smi), masked_root, kRootRegister);
    // Now this add operation will either leave the value unchanged if it is
    // a smi or add the isolate root if it is a heap object.
    addq(destination, masked_root);
  } else {
    Label done;
    JumpIfSmi(destination, &done);
    addq(destination, kRootRegister);
    bind(&done);
  }
}

void TurboAssembler::DecompressAnyTagged(Register destination,
                                         Operand field_operand,
                                         Register scratch) {
  DCHECK(!AreAliased(destination, scratch));
  RecordComment("[ DecompressAnyTagged");
  movsxlq(destination, field_operand);
  DecompressRegisterAnyTagged(destination, scratch);
  RecordComment("]");
}

void TurboAssembler::DecompressAnyTagged(Register destination, Register source,
                                         Register scratch) {
  DCHECK(!AreAliased(destination, scratch));
  RecordComment("[ DecompressAnyTagged");
  movsxlq(destination, source);
  DecompressRegisterAnyTagged(destination, scratch);
  RecordComment("]");
}

void MacroAssembler::RecordWriteField(Register object, int offset,
                                      Register value, Register dst,
                                      SaveFPRegsMode save_fp,
                                      RememberedSetAction remembered_set_action,
                                      SmiCheck smi_check) {
  // First, check if a write barrier is even needed. The tests below
  // catch stores of Smis.
  Label done;

  // Skip barrier if writing a smi.
  if (smi_check == INLINE_SMI_CHECK) {
    JumpIfSmi(value, &done);
  }

  // Although the object register is tagged, the offset is relative to the start
  // of the object, so the offset must be a multiple of kTaggedSize.
  DCHECK(IsAligned(offset, kTaggedSize));

  leaq(dst, FieldOperand(object, offset));
  if (emit_debug_code()) {
    Label ok;
    testb(dst, Immediate(kTaggedSize - 1));
    j(zero, &ok, Label::kNear);
    int3();
    bind(&ok);
  }

  RecordWrite(object, dst, value, save_fp, remembered_set_action,
              OMIT_SMI_CHECK);

  bind(&done);

  // Clobber clobbered input registers when running with the debug-code flag
  // turned on to provoke errors.
  if (emit_debug_code()) {
    Move(value, kZapValue, RelocInfo::NONE);
    Move(dst, kZapValue, RelocInfo::NONE);
  }
}

void TurboAssembler::SaveRegisters(RegList registers) {
  DCHECK_GT(NumRegs(registers), 0);
  for (int i = 0; i < Register::kNumRegisters; ++i) {
    if ((registers >> i) & 1u) {
      pushq(Register::from_code(i));
    }
  }
}

void TurboAssembler::RestoreRegisters(RegList registers) {
  DCHECK_GT(NumRegs(registers), 0);
  for (int i = Register::kNumRegisters - 1; i >= 0; --i) {
    if ((registers >> i) & 1u) {
      popq(Register::from_code(i));
    }
  }
}

void TurboAssembler::CallEphemeronKeyBarrier(Register object, Register address,
                                             SaveFPRegsMode fp_mode) {
  EphemeronKeyBarrierDescriptor descriptor;
  RegList registers = descriptor.allocatable_registers();

  SaveRegisters(registers);

  Register object_parameter(
      descriptor.GetRegisterParameter(EphemeronKeyBarrierDescriptor::kObject));
  Register slot_parameter(descriptor.GetRegisterParameter(
      EphemeronKeyBarrierDescriptor::kSlotAddress));
  Register fp_mode_parameter(
      descriptor.GetRegisterParameter(EphemeronKeyBarrierDescriptor::kFPMode));

  MovePair(slot_parameter, address, object_parameter, object);
  Smi smi_fm = Smi::FromEnum(fp_mode);
  Move(fp_mode_parameter, smi_fm);
  Call(isolate()->builtins()->builtin_handle(Builtins::kEphemeronKeyBarrier),
       RelocInfo::CODE_TARGET);

  RestoreRegisters(registers);
}

void TurboAssembler::CallRecordWriteStub(
    Register object, Register address,
    RememberedSetAction remembered_set_action, SaveFPRegsMode fp_mode) {
  CallRecordWriteStub(
      object, address, remembered_set_action, fp_mode,
      isolate()->builtins()->builtin_handle(Builtins::kRecordWrite),
      kNullAddress);
}

void TurboAssembler::CallRecordWriteStub(
    Register object, Register address,
    RememberedSetAction remembered_set_action, SaveFPRegsMode fp_mode,
    Address wasm_target) {
  CallRecordWriteStub(object, address, remembered_set_action, fp_mode,
                      Handle<Code>::null(), wasm_target);
}

void TurboAssembler::CallRecordWriteStub(
    Register object, Register address,
    RememberedSetAction remembered_set_action, SaveFPRegsMode fp_mode,
    Handle<Code> code_target, Address wasm_target) {
  DCHECK_NE(code_target.is_null(), wasm_target == kNullAddress);

  RecordWriteDescriptor descriptor;
  RegList registers = descriptor.allocatable_registers();

  SaveRegisters(registers);

  Register object_parameter(
      descriptor.GetRegisterParameter(RecordWriteDescriptor::kObject));
  Register slot_parameter(
      descriptor.GetRegisterParameter(RecordWriteDescriptor::kSlot));
  Register remembered_set_parameter(
      descriptor.GetRegisterParameter(RecordWriteDescriptor::kRememberedSet));
  Register fp_mode_parameter(
      descriptor.GetRegisterParameter(RecordWriteDescriptor::kFPMode));

  // Prepare argument registers for calling RecordWrite
  // slot_parameter   <= address
  // object_parameter <= object
  MovePair(slot_parameter, address, object_parameter, object);

  Smi smi_rsa = Smi::FromEnum(remembered_set_action);
  Smi smi_fm = Smi::FromEnum(fp_mode);
  Move(remembered_set_parameter, smi_rsa);
  if (smi_rsa != smi_fm) {
    Move(fp_mode_parameter, smi_fm);
  } else {
    movq(fp_mode_parameter, remembered_set_parameter);
  }
  if (code_target.is_null()) {
    // Use {near_call} for direct Wasm call within a module.
    near_call(wasm_target, RelocInfo::WASM_STUB_CALL);
  } else {
    Call(code_target, RelocInfo::CODE_TARGET);
  }

  RestoreRegisters(registers);
}

void MacroAssembler::RecordWrite(Register object, Register address,
                                 Register value, SaveFPRegsMode fp_mode,
                                 RememberedSetAction remembered_set_action,
                                 SmiCheck smi_check) {
  DCHECK(object != value);
  DCHECK(object != address);
  DCHECK(value != address);
  AssertNotSmi(object);

  if ((remembered_set_action == OMIT_REMEMBERED_SET &&
       !FLAG_incremental_marking) ||
      FLAG_disable_write_barriers) {
    return;
  }

  if (emit_debug_code()) {
    Label ok;
    cmp_tagged(value, Operand(address, 0));
    j(equal, &ok, Label::kNear);
    int3();
    bind(&ok);
  }

  // First, check if a write barrier is even needed. The tests below
  // catch stores of smis and stores into the young generation.
  Label done;

  if (smi_check == INLINE_SMI_CHECK) {
    // Skip barrier if writing a smi.
    JumpIfSmi(value, &done);
  }

  CheckPageFlag(value,
                value,  // Used as scratch.
                MemoryChunk::kPointersToHereAreInterestingMask, zero, &done,
                Label::kNear);

  CheckPageFlag(object,
                value,  // Used as scratch.
                MemoryChunk::kPointersFromHereAreInterestingMask, zero, &done,
                Label::kNear);

  CallRecordWriteStub(object, address, remembered_set_action, fp_mode);

  bind(&done);

  // Clobber clobbered registers when running with the debug-code flag
  // turned on to provoke errors.
  if (emit_debug_code()) {
    Move(address, kZapValue, RelocInfo::NONE);
    Move(value, kZapValue, RelocInfo::NONE);
  }
}

void TurboAssembler::Assert(Condition cc, AbortReason reason) {
  if (emit_debug_code()) Check(cc, reason);
}

void TurboAssembler::AssertUnreachable(AbortReason reason) {
  if (emit_debug_code()) Abort(reason);
}

void TurboAssembler::Check(Condition cc, AbortReason reason) {
  Label L;
  j(cc, &L, Label::kNear);
  Abort(reason);
  // Control will not return here.
  bind(&L);
}

void TurboAssembler::CheckStackAlignment() {
  int frame_alignment = base::OS::ActivationFrameAlignment();
  int frame_alignment_mask = frame_alignment - 1;
  if (frame_alignment > kSystemPointerSize) {
    DCHECK(base::bits::IsPowerOfTwo(frame_alignment));
    Label alignment_as_expected;
    testq(rsp, Immediate(frame_alignment_mask));
    j(zero, &alignment_as_expected, Label::kNear);
    // Abort if stack is not aligned.
    int3();
    bind(&alignment_as_expected);
  }
}

void TurboAssembler::Abort(AbortReason reason) {
#ifdef DEBUG
  const char* msg = GetAbortReason(reason);
  RecordComment("Abort message: ");
  RecordComment(msg);
#endif

  // Avoid emitting call to builtin if requested.
  if (trap_on_abort()) {
    int3();
    return;
  }

  if (should_abort_hard()) {
    // We don't care if we constructed a frame. Just pretend we did.
    FrameScope assume_frame(this, StackFrame::NONE);
    movl(arg_reg_1, Immediate(static_cast<int>(reason)));
    PrepareCallCFunction(1);
    LoadAddress(rax, ExternalReference::abort_with_reason());
    call(rax);
    return;
  }

  Move(rdx, Smi::FromInt(static_cast<int>(reason)));

  if (!has_frame()) {
    // We don't actually want to generate a pile of code for this, so just
    // claim there is a stack frame, without generating one.
    FrameScope scope(this, StackFrame::NONE);
    Call(BUILTIN_CODE(isolate(), Abort), RelocInfo::CODE_TARGET);
  } else {
    Call(BUILTIN_CODE(isolate(), Abort), RelocInfo::CODE_TARGET);
  }
  // Control will not return here.
  int3();
}

void TurboAssembler::CallRuntimeWithCEntry(Runtime::FunctionId fid,
                                           Register centry) {
  const Runtime::Function* f = Runtime::FunctionForId(fid);
  // TODO(1236192): Most runtime routines don't need the number of
  // arguments passed in because it is constant. At some point we
  // should remove this need and make the runtime routine entry code
  // smarter.
  Set(rax, f->nargs);
  LoadAddress(rbx, ExternalReference::Create(f));
  DCHECK(!AreAliased(centry, rax, rbx));
  DCHECK(centry == rcx);
  CallCodeObject(centry);
}

void MacroAssembler::CallRuntime(const Runtime::Function* f, int num_arguments,
                                 SaveFPRegsMode save_doubles) {
  // If the expected number of arguments of the runtime function is
  // constant, we check that the actual number of arguments match the
  // expectation.
  CHECK(f->nargs < 0 || f->nargs == num_arguments);

  // TODO(1236192): Most runtime routines don't need the number of
  // arguments passed in because it is constant. At some point we
  // should remove this need and make the runtime routine entry code
  // smarter.
  Set(rax, num_arguments);
  LoadAddress(rbx, ExternalReference::Create(f));
  Handle<Code> code =
      CodeFactory::CEntry(isolate(), f->result_size, save_doubles);
  Call(code, RelocInfo::CODE_TARGET);
}

void MacroAssembler::TailCallRuntime(Runtime::FunctionId fid) {
  // ----------- S t a t e -------------
  //  -- rsp[0]                 : return address
  //  -- rsp[8]                 : argument num_arguments - 1
  //  ...
  //  -- rsp[8 * num_arguments] : argument 0 (receiver)
  //
  //  For runtime functions with variable arguments:
  //  -- rax                    : number of  arguments
  // -----------------------------------

  const Runtime::Function* function = Runtime::FunctionForId(fid);
  DCHECK_EQ(1, function->result_size);
  if (function->nargs >= 0) {
    Set(rax, function->nargs);
  }
  JumpToExternalReference(ExternalReference::Create(fid));
}

void MacroAssembler::JumpToExternalReference(const ExternalReference& ext,
                                             bool builtin_exit_frame) {
  // Set the entry point and jump to the C entry runtime stub.
  LoadAddress(rbx, ext);
  Handle<Code> code = CodeFactory::CEntry(isolate(), 1, kDontSaveFPRegs,
                                          kArgvOnStack, builtin_exit_frame);
  Jump(code, RelocInfo::CODE_TARGET);
}

static constexpr Register saved_regs[] = {rax, rcx, rdx, rbx, rbp, rsi,
                                          rdi, r8,  r9,  r10, r11};

static constexpr int kNumberOfSavedRegs = sizeof(saved_regs) / sizeof(Register);

int TurboAssembler::RequiredStackSizeForCallerSaved(SaveFPRegsMode fp_mode,
                                                    Register exclusion1,
                                                    Register exclusion2,
                                                    Register exclusion3) const {
  int bytes = 0;
  for (int i = 0; i < kNumberOfSavedRegs; i++) {
    Register reg = saved_regs[i];
    if (reg != exclusion1 && reg != exclusion2 && reg != exclusion3) {
      bytes += kSystemPointerSize;
    }
  }

  // R12 to r15 are callee save on all platforms.
  if (fp_mode == kSaveFPRegs) {
    bytes += kDoubleSize * XMMRegister::kNumRegisters;
  }

  return bytes;
}

int TurboAssembler::PushCallerSaved(SaveFPRegsMode fp_mode, Register exclusion1,
                                    Register exclusion2, Register exclusion3) {
  // We don't allow a GC during a store buffer overflow so there is no need to
  // store the registers in any particular way, but we do have to store and
  // restore them.
  int bytes = 0;
  for (int i = 0; i < kNumberOfSavedRegs; i++) {
    Register reg = saved_regs[i];
    if (reg != exclusion1 && reg != exclusion2 && reg != exclusion3) {
      pushq(reg);
      bytes += kSystemPointerSize;
    }
  }

  // R12 to r15 are callee save on all platforms.
  if (fp_mode == kSaveFPRegs) {
    int delta = kDoubleSize * XMMRegister::kNumRegisters;
    AllocateStackSpace(delta);
    for (int i = 0; i < XMMRegister::kNumRegisters; i++) {
      XMMRegister reg = XMMRegister::from_code(i);
      Movsd(Operand(rsp, i * kDoubleSize), reg);
    }
    bytes += delta;
  }

  return bytes;
}

int TurboAssembler::PopCallerSaved(SaveFPRegsMode fp_mode, Register exclusion1,
                                   Register exclusion2, Register exclusion3) {
  int bytes = 0;
  if (fp_mode == kSaveFPRegs) {
    for (int i = 0; i < XMMRegister::kNumRegisters; i++) {
      XMMRegister reg = XMMRegister::from_code(i);
      Movsd(reg, Operand(rsp, i * kDoubleSize));
    }
    int delta = kDoubleSize * XMMRegister::kNumRegisters;
    addq(rsp, Immediate(kDoubleSize * XMMRegister::kNumRegisters));
    bytes += delta;
  }

  for (int i = kNumberOfSavedRegs - 1; i >= 0; i--) {
    Register reg = saved_regs[i];
    if (reg != exclusion1 && reg != exclusion2 && reg != exclusion3) {
      popq(reg);
      bytes += kSystemPointerSize;
    }
  }

  return bytes;
}

void TurboAssembler::Cvtss2sd(XMMRegister dst, XMMRegister src) {
  if (CpuFeatures::IsSupported(AVX)) {
    CpuFeatureScope scope(this, AVX);
    vcvtss2sd(dst, src, src);
  } else {
    cvtss2sd(dst, src);
  }
}

void TurboAssembler::Cvtss2sd(XMMRegister dst, Operand src) {
  if (CpuFeatures::IsSupported(AVX)) {
    CpuFeatureScope scope(this, AVX);
    vcvtss2sd(dst, dst, src);
  } else {
    cvtss2sd(dst, src);
  }
}

void TurboAssembler::Cvtsd2ss(XMMRegister dst, XMMRegister src) {
  if (CpuFeatures::IsSupported(AVX)) {
    CpuFeatureScope scope(this, AVX);
    vcvtsd2ss(dst, src, src);
  } else {
    cvtsd2ss(dst, src);
  }
}

void TurboAssembler::Cvtsd2ss(XMMRegister dst, Operand src) {
  if (CpuFeatures::IsSupported(AVX)) {
    CpuFeatureScope scope(this, AVX);
    vcvtsd2ss(dst, dst, src);
  } else {
    cvtsd2ss(dst, src);
  }
}

void TurboAssembler::Cvtlsi2sd(XMMRegister dst, Register src) {
  if (CpuFeatures::IsSupported(AVX)) {
    CpuFeatureScope scope(this, AVX);
    vxorpd(dst, dst, dst);
    vcvtlsi2sd(dst, dst, src);
  } else {
    xorpd(dst, dst);
    cvtlsi2sd(dst, src);
  }
}

void TurboAssembler::Cvtlsi2sd(XMMRegister dst, Operand src) {
  if (CpuFeatures::IsSupported(AVX)) {
    CpuFeatureScope scope(this, AVX);
    vxorpd(dst, dst, dst);
    vcvtlsi2sd(dst, dst, src);
  } else {
    xorpd(dst, dst);
    cvtlsi2sd(dst, src);
  }
}

void TurboAssembler::Cvtlsi2ss(XMMRegister dst, Register src) {
  if (CpuFeatures::IsSupported(AVX)) {
    CpuFeatureScope scope(this, AVX);
    vxorps(dst, dst, dst);
    vcvtlsi2ss(dst, dst, src);
  } else {
    xorps(dst, dst);
    cvtlsi2ss(dst, src);
  }
}

void TurboAssembler::Cvtlsi2ss(XMMRegister dst, Operand src) {
  if (CpuFeatures::IsSupported(AVX)) {
    CpuFeatureScope scope(this, AVX);
    vxorps(dst, dst, dst);
    vcvtlsi2ss(dst, dst, src);
  } else {
    xorps(dst, dst);
    cvtlsi2ss(dst, src);
  }
}

void TurboAssembler::Cvtqsi2ss(XMMRegister dst, Register src) {
  if (CpuFeatures::IsSupported(AVX)) {
    CpuFeatureScope scope(this, AVX);
    vxorps(dst, dst, dst);
    vcvtqsi2ss(dst, dst, src);
  } else {
    xorps(dst, dst);
    cvtqsi2ss(dst, src);
  }
}

void TurboAssembler::Cvtqsi2ss(XMMRegister dst, Operand src) {
  if (CpuFeatures::IsSupported(AVX)) {
    CpuFeatureScope scope(this, AVX);
    vxorps(dst, dst, dst);
    vcvtqsi2ss(dst, dst, src);
  } else {
    xorps(dst, dst);
    cvtqsi2ss(dst, src);
  }
}

void TurboAssembler::Cvtqsi2sd(XMMRegister dst, Register src) {
  if (CpuFeatures::IsSupported(AVX)) {
    CpuFeatureScope scope(this, AVX);
    vxorpd(dst, dst, dst);
    vcvtqsi2sd(dst, dst, src);
  } else {
    xorpd(dst, dst);
    cvtqsi2sd(dst, src);
  }
}

void TurboAssembler::Cvtqsi2sd(XMMRegister dst, Operand src) {
  if (CpuFeatures::IsSupported(AVX)) {
    CpuFeatureScope scope(this, AVX);
    vxorpd(dst, dst, dst);
    vcvtqsi2sd(dst, dst, src);
  } else {
    xorpd(dst, dst);
    cvtqsi2sd(dst, src);
  }
}

void TurboAssembler::Cvtlui2ss(XMMRegister dst, Register src) {
  // Zero-extend the 32 bit value to 64 bit.
  movl(kScratchRegister, src);
  Cvtqsi2ss(dst, kScratchRegister);
}

void TurboAssembler::Cvtlui2ss(XMMRegister dst, Operand src) {
  // Zero-extend the 32 bit value to 64 bit.
  movl(kScratchRegister, src);
  Cvtqsi2ss(dst, kScratchRegister);
}

void TurboAssembler::Cvtlui2sd(XMMRegister dst, Register src) {
  // Zero-extend the 32 bit value to 64 bit.
  movl(kScratchRegister, src);
  Cvtqsi2sd(dst, kScratchRegister);
}

void TurboAssembler::Cvtlui2sd(XMMRegister dst, Operand src) {
  // Zero-extend the 32 bit value to 64 bit.
  movl(kScratchRegister, src);
  Cvtqsi2sd(dst, kScratchRegister);
}

void TurboAssembler::Cvtqui2ss(XMMRegister dst, Register src) {
  Label done;
  Cvtqsi2ss(dst, src);
  testq(src, src);
  j(positive, &done, Label::kNear);

  // Compute {src/2 | (src&1)} (retain the LSB to avoid rounding errors).
  if (src != kScratchRegister) movq(kScratchRegister, src);
  shrq(kScratchRegister, Immediate(1));
  // The LSB is shifted into CF. If it is set, set the LSB in {tmp}.
  Label msb_not_set;
  j(not_carry, &msb_not_set, Label::kNear);
  orq(kScratchRegister, Immediate(1));
  bind(&msb_not_set);
  Cvtqsi2ss(dst, kScratchRegister);
  Addss(dst, dst);
  bind(&done);
}

void TurboAssembler::Cvtqui2ss(XMMRegister dst, Operand src) {
  movq(kScratchRegister, src);
  Cvtqui2ss(dst, kScratchRegister);
}

void TurboAssembler::Cvtqui2sd(XMMRegister dst, Register src) {
  Label done;
  Cvtqsi2sd(dst, src);
  testq(src, src);
  j(positive, &done, Label::kNear);

  // Compute {src/2 | (src&1)} (retain the LSB to avoid rounding errors).
  if (src != kScratchRegister) movq(kScratchRegister, src);
  shrq(kScratchRegister, Immediate(1));
  // The LSB is shifted into CF. If it is set, set the LSB in {tmp}.
  Label msb_not_set;
  j(not_carry, &msb_not_set, Label::kNear);
  orq(kScratchRegister, Immediate(1));
  bind(&msb_not_set);
  Cvtqsi2sd(dst, kScratchRegister);
  Addsd(dst, dst);
  bind(&done);
}

void TurboAssembler::Cvtqui2sd(XMMRegister dst, Operand src) {
  movq(kScratchRegister, src);
  Cvtqui2sd(dst, kScratchRegister);
}

void TurboAssembler::Cvttss2si(Register dst, XMMRegister src) {
  if (CpuFeatures::IsSupported(AVX)) {
    CpuFeatureScope scope(this, AVX);
    vcvttss2si(dst, src);
  } else {
    cvttss2si(dst, src);
  }
}

void TurboAssembler::Cvttss2si(Register dst, Operand src) {
  if (CpuFeatures::IsSupported(AVX)) {
    CpuFeatureScope scope(this, AVX);
    vcvttss2si(dst, src);
  } else {
    cvttss2si(dst, src);
  }
}

void TurboAssembler::Cvttsd2si(Register dst, XMMRegister src) {
  if (CpuFeatures::IsSupported(AVX)) {
    CpuFeatureScope scope(this, AVX);
    vcvttsd2si(dst, src);
  } else {
    cvttsd2si(dst, src);
  }
}

void TurboAssembler::Cvttsd2si(Register dst, Operand src) {
  if (CpuFeatures::IsSupported(AVX)) {
    CpuFeatureScope scope(this, AVX);
    vcvttsd2si(dst, src);
  } else {
    cvttsd2si(dst, src);
  }
}

void TurboAssembler::Cvttss2siq(Register dst, XMMRegister src) {
  if (CpuFeatures::IsSupported(AVX)) {
    CpuFeatureScope scope(this, AVX);
    vcvttss2siq(dst, src);
  } else {
    cvttss2siq(dst, src);
  }
}

void TurboAssembler::Cvttss2siq(Register dst, Operand src) {
  if (CpuFeatures::IsSupported(AVX)) {
    CpuFeatureScope scope(this, AVX);
    vcvttss2siq(dst, src);
  } else {
    cvttss2siq(dst, src);
  }
}

void TurboAssembler::Cvttsd2siq(Register dst, XMMRegister src) {
  if (CpuFeatures::IsSupported(AVX)) {
    CpuFeatureScope scope(this, AVX);
    vcvttsd2siq(dst, src);
  } else {
    cvttsd2siq(dst, src);
  }
}

void TurboAssembler::Cvttsd2siq(Register dst, Operand src) {
  if (CpuFeatures::IsSupported(AVX)) {
    CpuFeatureScope scope(this, AVX);
    vcvttsd2siq(dst, src);
  } else {
    cvttsd2siq(dst, src);
  }
}

namespace {
template <typename OperandOrXMMRegister, bool is_double>
void ConvertFloatToUint64(TurboAssembler* tasm, Register dst,
                          OperandOrXMMRegister src, Label* fail) {
  Label success;
  // There does not exist a native float-to-uint instruction, so we have to use
  // a float-to-int, and postprocess the result.
  if (is_double) {
    tasm->Cvttsd2siq(dst, src);
  } else {
    tasm->Cvttss2siq(dst, src);
  }
  // If the result of the conversion is positive, we are already done.
  tasm->testq(dst, dst);
  tasm->j(positive, &success);
  // The result of the first conversion was negative, which means that the
  // input value was not within the positive int64 range. We subtract 2^63
  // and convert it again to see if it is within the uint64 range.
  if (is_double) {
    tasm->Move(kScratchDoubleReg, -9223372036854775808.0);
    tasm->Addsd(kScratchDoubleReg, src);
    tasm->Cvttsd2siq(dst, kScratchDoubleReg);
  } else {
    tasm->Move(kScratchDoubleReg, -9223372036854775808.0f);
    tasm->Addss(kScratchDoubleReg, src);
    tasm->Cvttss2siq(dst, kScratchDoubleReg);
  }
  tasm->testq(dst, dst);
  // The only possible negative value here is 0x80000000000000000, which is
  // used on x64 to indicate an integer overflow.
  tasm->j(negative, fail ? fail : &success);
  // The input value is within uint64 range and the second conversion worked
  // successfully, but we still have to undo the subtraction we did
  // earlier.
  tasm->Set(kScratchRegister, 0x8000000000000000);
  tasm->orq(dst, kScratchRegister);
  tasm->bind(&success);
}
}  // namespace

void TurboAssembler::Cvttsd2uiq(Register dst, Operand src, Label* success) {
  ConvertFloatToUint64<Operand, true>(this, dst, src, success);
}

void TurboAssembler::Cvttsd2uiq(Register dst, XMMRegister src, Label* success) {
  ConvertFloatToUint64<XMMRegister, true>(this, dst, src, success);
}

void TurboAssembler::Cvttss2uiq(Register dst, Operand src, Label* success) {
  ConvertFloatToUint64<Operand, false>(this, dst, src, success);
}

void TurboAssembler::Cvttss2uiq(Register dst, XMMRegister src, Label* success) {
  ConvertFloatToUint64<XMMRegister, false>(this, dst, src, success);
}

void TurboAssembler::Set(Register dst, int64_t x) {
  if (x == 0) {
    xorl(dst, dst);
  } else if (is_uint32(x)) {
    movl(dst, Immediate(static_cast<uint32_t>(x)));
  } else if (is_int32(x)) {
    movq(dst, Immediate(static_cast<int32_t>(x)));
  } else {
    movq(dst, x);
  }
}

void TurboAssembler::Set(Operand dst, intptr_t x) {
  if (is_int32(x)) {
    movq(dst, Immediate(static_cast<int32_t>(x)));
  } else {
    Set(kScratchRegister, x);
    movq(dst, kScratchRegister);
  }
}

// ----------------------------------------------------------------------------
// Smi tagging, untagging and tag detection.

Register TurboAssembler::GetSmiConstant(Smi source) {
  STATIC_ASSERT(kSmiTag == 0);
  int value = source.value();
  if (value == 0) {
    xorl(kScratchRegister, kScratchRegister);
    return kScratchRegister;
  }
  Move(kScratchRegister, source);
  return kScratchRegister;
}

void TurboAssembler::Move(Register dst, Smi source) {
  STATIC_ASSERT(kSmiTag == 0);
  int value = source.value();
  if (value == 0) {
    xorl(dst, dst);
  } else {
    Move(dst, source.ptr(), RelocInfo::NONE);
  }
}

void TurboAssembler::Move(Register dst, ExternalReference ext) {
  if (FLAG_embedded_builtins) {
    if (root_array_available_ && options().isolate_independent_code) {
      IndirectLoadExternalReference(dst, ext);
      return;
    }
  }
  movq(dst, Immediate64(ext.address(), RelocInfo::EXTERNAL_REFERENCE));
}

void MacroAssembler::SmiTag(Register dst, Register src) {
  STATIC_ASSERT(kSmiTag == 0);
  if (dst != src) {
    movq(dst, src);
  }
  DCHECK(SmiValuesAre32Bits() || SmiValuesAre31Bits());
  shlq(dst, Immediate(kSmiShift));
}

void TurboAssembler::SmiUntag(Register dst, Register src) {
  STATIC_ASSERT(kSmiTag == 0);
  if (dst != src) {
    movq(dst, src);
  }
  DCHECK(SmiValuesAre32Bits() || SmiValuesAre31Bits());
  sarq(dst, Immediate(kSmiShift));
}

void TurboAssembler::SmiUntag(Register dst, Operand src) {
  if (SmiValuesAre32Bits()) {
    movl(dst, Operand(src, kSmiShift / kBitsPerByte));
    // Sign extend to 64-bit.
    movsxlq(dst, dst);
  } else {
    DCHECK(SmiValuesAre31Bits());
#ifdef V8_COMPRESS_POINTERS
    movsxlq(dst, src);
#else
    movq(dst, src);
#endif
    sarq(dst, Immediate(kSmiShift));
  }
}

void MacroAssembler::SmiCompare(Register smi1, Register smi2) {
  AssertSmi(smi1);
  AssertSmi(smi2);
  cmp_tagged(smi1, smi2);
}

void MacroAssembler::SmiCompare(Register dst, Smi src) {
  AssertSmi(dst);
  Cmp(dst, src);
}

void MacroAssembler::Cmp(Register dst, Smi src) {
  DCHECK_NE(dst, kScratchRegister);
  if (src.value() == 0) {
    test_tagged(dst, dst);
  } else {
    Register constant_reg = GetSmiConstant(src);
    cmp_tagged(dst, constant_reg);
  }
}

void MacroAssembler::SmiCompare(Register dst, Operand src) {
  AssertSmi(dst);
  AssertSmi(src);
  cmp_tagged(dst, src);
}

void MacroAssembler::SmiCompare(Operand dst, Register src) {
  AssertSmi(dst);
  AssertSmi(src);
  cmp_tagged(dst, src);
}

void MacroAssembler::SmiCompare(Operand dst, Smi src) {
  AssertSmi(dst);
  if (SmiValuesAre32Bits()) {
    cmpl(Operand(dst, kSmiShift / kBitsPerByte), Immediate(src.value()));
  } else {
    DCHECK(SmiValuesAre31Bits());
    cmpl(dst, Immediate(src));
  }
}

void MacroAssembler::Cmp(Operand dst, Smi src) {
  // The Operand cannot use the smi register.
  Register smi_reg = GetSmiConstant(src);
  DCHECK(!dst.AddressUsesRegister(smi_reg));
  cmp_tagged(dst, smi_reg);
}

Condition TurboAssembler::CheckSmi(Register src) {
  STATIC_ASSERT(kSmiTag == 0);
  testb(src, Immediate(kSmiTagMask));
  return zero;
}

Condition TurboAssembler::CheckSmi(Operand src) {
  STATIC_ASSERT(kSmiTag == 0);
  testb(src, Immediate(kSmiTagMask));
  return zero;
}

void TurboAssembler::JumpIfSmi(Register src, Label* on_smi,
                               Label::Distance near_jump) {
  Condition smi = CheckSmi(src);
  j(smi, on_smi, near_jump);
}

void MacroAssembler::JumpIfNotSmi(Register src, Label* on_not_smi,
                                  Label::Distance near_jump) {
  Condition smi = CheckSmi(src);
  j(NegateCondition(smi), on_not_smi, near_jump);
}

void MacroAssembler::JumpIfNotSmi(Operand src, Label* on_not_smi,
                                  Label::Distance near_jump) {
  Condition smi = CheckSmi(src);
  j(NegateCondition(smi), on_not_smi, near_jump);
}

void MacroAssembler::SmiAddConstant(Operand dst, Smi constant) {
  if (constant.value() != 0) {
    if (SmiValuesAre32Bits()) {
      addl(Operand(dst, kSmiShift / kBitsPerByte), Immediate(constant.value()));
    } else {
      DCHECK(SmiValuesAre31Bits());
      if (kTaggedSize == kInt64Size) {
        // Sign-extend value after addition
        movl(kScratchRegister, dst);
        addl(kScratchRegister, Immediate(constant));
        movsxlq(kScratchRegister, kScratchRegister);
        movq(dst, kScratchRegister);
      } else {
        DCHECK_EQ(kTaggedSize, kInt32Size);
        addl(dst, Immediate(constant));
      }
    }
  }
}

SmiIndex MacroAssembler::SmiToIndex(Register dst, Register src, int shift) {
  if (SmiValuesAre32Bits()) {
    DCHECK(is_uint6(shift));
    // There is a possible optimization if shift is in the range 60-63, but that
    // will (and must) never happen.
    if (dst != src) {
      movq(dst, src);
    }
    if (shift < kSmiShift) {
      sarq(dst, Immediate(kSmiShift - shift));
    } else {
      shlq(dst, Immediate(shift - kSmiShift));
    }
    return SmiIndex(dst, times_1);
  } else {
    DCHECK(SmiValuesAre31Bits());
    if (dst != src) {
      mov_tagged(dst, src);
    }
    // We have to sign extend the index register to 64-bit as the SMI might
    // be negative.
    movsxlq(dst, dst);
    if (shift < kSmiShift) {
      sarq(dst, Immediate(kSmiShift - shift));
    } else if (shift != kSmiShift) {
      if (shift - kSmiShift <= static_cast<int>(times_8)) {
        return SmiIndex(dst, static_cast<ScaleFactor>(shift - kSmiShift));
      }
      shlq(dst, Immediate(shift - kSmiShift));
    }
    return SmiIndex(dst, times_1);
  }
}

void TurboAssembler::Push(Smi source) {
  intptr_t smi = static_cast<intptr_t>(source.ptr());
  if (is_int32(smi)) {
    Push(Immediate(static_cast<int32_t>(smi)));
    return;
  }
  int first_byte_set = base::bits::CountTrailingZeros64(smi) / 8;
  int last_byte_set = (63 - base::bits::CountLeadingZeros64(smi)) / 8;
  if (first_byte_set == last_byte_set) {
    // This sequence has only 7 bytes, compared to the 12 bytes below.
    Push(Immediate(0));
    movb(Operand(rsp, first_byte_set),
         Immediate(static_cast<int8_t>(smi >> (8 * first_byte_set))));
    return;
  }
  Register constant = GetSmiConstant(source);
  Push(constant);
}

// ----------------------------------------------------------------------------

void TurboAssembler::Move(Register dst, Register src) {
  if (dst != src) {
    movq(dst, src);
  }
}

void TurboAssembler::MovePair(Register dst0, Register src0, Register dst1,
                              Register src1) {
  if (dst0 != src1) {
    // Normal case: Writing to dst0 does not destroy src1.
    Move(dst0, src0);
    Move(dst1, src1);
  } else if (dst1 != src0) {
    // Only dst0 and src1 are the same register,
    // but writing to dst1 does not destroy src0.
    Move(dst1, src1);
    Move(dst0, src0);
  } else {
    // dst0 == src1, and dst1 == src0, a swap is required:
    // dst0 \/ src0
    // dst1 /\ src1
    xchgq(dst0, dst1);
  }
}

void TurboAssembler::MoveNumber(Register dst, double value) {
  int32_t smi;
  if (DoubleToSmiInteger(value, &smi)) {
    Move(dst, Smi::FromInt(smi));
  } else {
    movq_heap_number(dst, value);
  }
}

void TurboAssembler::Move(XMMRegister dst, uint32_t src) {
  if (src == 0) {
    Xorps(dst, dst);
  } else {
    unsigned nlz = base::bits::CountLeadingZeros(src);
    unsigned ntz = base::bits::CountTrailingZeros(src);
    unsigned pop = base::bits::CountPopulation(src);
    DCHECK_NE(0u, pop);
    if (pop + ntz + nlz == 32) {
      Pcmpeqd(dst, dst);
      if (ntz) Pslld(dst, static_cast<byte>(ntz + nlz));
      if (nlz) Psrld(dst, static_cast<byte>(nlz));
    } else {
      movl(kScratchRegister, Immediate(src));
      Movd(dst, kScratchRegister);
    }
  }
}

void TurboAssembler::Move(XMMRegister dst, uint64_t src) {
  if (src == 0) {
    Xorpd(dst, dst);
  } else {
    unsigned nlz = base::bits::CountLeadingZeros(src);
    unsigned ntz = base::bits::CountTrailingZeros(src);
    unsigned pop = base::bits::CountPopulation(src);
    DCHECK_NE(0u, pop);
    if (pop + ntz + nlz == 64) {
      Pcmpeqd(dst, dst);
      if (ntz) Psllq(dst, static_cast<byte>(ntz + nlz));
      if (nlz) Psrlq(dst, static_cast<byte>(nlz));
    } else {
      uint32_t lower = static_cast<uint32_t>(src);
      uint32_t upper = static_cast<uint32_t>(src >> 32);
      if (upper == 0) {
        Move(dst, lower);
      } else {
        movq(kScratchRegister, src);
        Movq(dst, kScratchRegister);
      }
    }
  }
}

// ----------------------------------------------------------------------------

void MacroAssembler::Absps(XMMRegister dst) {
  Andps(dst, ExternalReferenceAsOperand(
                 ExternalReference::address_of_float_abs_constant()));
}

void MacroAssembler::Negps(XMMRegister dst) {
  Xorps(dst, ExternalReferenceAsOperand(
                 ExternalReference::address_of_float_neg_constant()));
}

void MacroAssembler::Abspd(XMMRegister dst) {
  Andps(dst, ExternalReferenceAsOperand(
                 ExternalReference::address_of_double_abs_constant()));
}

void MacroAssembler::Negpd(XMMRegister dst) {
  Xorps(dst, ExternalReferenceAsOperand(
                 ExternalReference::address_of_double_neg_constant()));
}

void MacroAssembler::Cmp(Register dst, Handle<Object> source) {
  AllowDeferredHandleDereference smi_check;
  if (source->IsSmi()) {
    Cmp(dst, Smi::cast(*source));
  } else {
    Move(kScratchRegister, Handle<HeapObject>::cast(source));
    cmp_tagged(dst, kScratchRegister);
  }
}

void MacroAssembler::Cmp(Operand dst, Handle<Object> source) {
  AllowDeferredHandleDereference smi_check;
  if (source->IsSmi()) {
    Cmp(dst, Smi::cast(*source));
  } else {
    Move(kScratchRegister, Handle<HeapObject>::cast(source));
    cmp_tagged(dst, kScratchRegister);
  }
}

void MacroAssembler::JumpIfIsInRange(Register value, unsigned lower_limit,
                                     unsigned higher_limit, Label* on_in_range,
                                     Label::Distance near_jump) {
  if (lower_limit != 0) {
    leal(kScratchRegister, Operand(value, 0u - lower_limit));
    cmpl(kScratchRegister, Immediate(higher_limit - lower_limit));
  } else {
    cmpl(value, Immediate(higher_limit));
  }
  j(below_equal, on_in_range, near_jump);
}

void TurboAssembler::Push(Handle<HeapObject> source) {
  Move(kScratchRegister, source);
  Push(kScratchRegister);
}

void TurboAssembler::Move(Register result, Handle<HeapObject> object,
                          RelocInfo::Mode rmode) {
  if (FLAG_embedded_builtins) {
    if (root_array_available_ && options().isolate_independent_code) {
      IndirectLoadConstant(result, object);
      return;
    }
  }
  if (RelocInfo::IsCompressedEmbeddedObject(rmode)) {
    EmbeddedObjectIndex index = AddEmbeddedObject(object);
    DCHECK(is_uint32(index));
    movl(result, Immediate(static_cast<int>(index), rmode));
  } else {
    DCHECK(RelocInfo::IsFullEmbeddedObject(rmode));
    movq(result, Immediate64(object.address(), rmode));
  }
}

void TurboAssembler::Move(Operand dst, Handle<HeapObject> object,
                          RelocInfo::Mode rmode) {
  Move(kScratchRegister, object, rmode);
  movq(dst, kScratchRegister);
}

void TurboAssembler::MoveStringConstant(Register result,
                                        const StringConstantBase* string,
                                        RelocInfo::Mode rmode) {
  movq_string(result, string);
}

void MacroAssembler::Drop(int stack_elements) {
  if (stack_elements > 0) {
    addq(rsp, Immediate(stack_elements * kSystemPointerSize));
  }
}

void MacroAssembler::DropUnderReturnAddress(int stack_elements,
                                            Register scratch) {
  DCHECK_GT(stack_elements, 0);
  if (stack_elements == 1) {
    popq(MemOperand(rsp, 0));
    return;
  }

  PopReturnAddressTo(scratch);
  Drop(stack_elements);
  PushReturnAddressFrom(scratch);
}

void TurboAssembler::Push(Register src) { pushq(src); }

void TurboAssembler::Push(Operand src) { pushq(src); }

void MacroAssembler::PushQuad(Operand src) { pushq(src); }

void TurboAssembler::Push(Immediate value) { pushq(value); }

void MacroAssembler::PushImm32(int32_t imm32) { pushq_imm32(imm32); }

void MacroAssembler::Pop(Register dst) { popq(dst); }

void MacroAssembler::Pop(Operand dst) { popq(dst); }

void MacroAssembler::PopQuad(Operand dst) { popq(dst); }

void TurboAssembler::Jump(const ExternalReference& reference) {
  DCHECK(root_array_available());
  jmp(Operand(kRootRegister, RootRegisterOffsetForExternalReferenceTableEntry(
                                 isolate(), reference)));
}

void TurboAssembler::Jump(Operand op) { jmp(op); }

void TurboAssembler::Jump(Address destination, RelocInfo::Mode rmode) {
  Move(kScratchRegister, destination, rmode);
  jmp(kScratchRegister);
}

void TurboAssembler::Jump(Handle<Code> code_object, RelocInfo::Mode rmode,
                          Condition cc) {
  DCHECK_IMPLIES(options().isolate_independent_code,
                 Builtins::IsIsolateIndependentBuiltin(*code_object));
  if (options().inline_offheap_trampolines) {
    int builtin_index = Builtins::kNoBuiltinId;
    if (isolate()->builtins()->IsBuiltinHandle(code_object, &builtin_index) &&
        Builtins::IsIsolateIndependent(builtin_index)) {
      Label skip;
      if (cc != always) {
        if (cc == never) return;
        j(NegateCondition(cc), &skip, Label::kNear);
      }
      // Inline the trampoline.
      RecordCommentForOffHeapTrampoline(builtin_index);
      CHECK_NE(builtin_index, Builtins::kNoBuiltinId);
      EmbeddedData d = EmbeddedData::FromBlob();
      Address entry = d.InstructionStartOfBuiltin(builtin_index);
      Move(kScratchRegister, entry, RelocInfo::OFF_HEAP_TARGET);
      jmp(kScratchRegister);
      bind(&skip);
      return;
    }
  }
  j(cc, code_object, rmode);
}

void MacroAssembler::JumpToInstructionStream(Address entry) {
  Move(kOffHeapTrampolineRegister, entry, RelocInfo::OFF_HEAP_TARGET);
  jmp(kOffHeapTrampolineRegister);
}

void TurboAssembler::Call(ExternalReference ext) {
  LoadAddress(kScratchRegister, ext);
  call(kScratchRegister);
}

void TurboAssembler::Call(Operand op) {
  if (!CpuFeatures::IsSupported(ATOM)) {
    call(op);
  } else {
    movq(kScratchRegister, op);
    call(kScratchRegister);
  }
}

void TurboAssembler::Call(Address destination, RelocInfo::Mode rmode) {
  Move(kScratchRegister, destination, rmode);
  call(kScratchRegister);
}

void TurboAssembler::Call(Handle<Code> code_object, RelocInfo::Mode rmode) {
  DCHECK_IMPLIES(options().isolate_independent_code,
                 Builtins::IsIsolateIndependentBuiltin(*code_object));
  if (options().inline_offheap_trampolines) {
    int builtin_index = Builtins::kNoBuiltinId;
    if (isolate()->builtins()->IsBuiltinHandle(code_object, &builtin_index) &&
        Builtins::IsIsolateIndependent(builtin_index)) {
      // Inline the trampoline.
      CallBuiltin(builtin_index);
      return;
    }
  }
  DCHECK(RelocInfo::IsCodeTarget(rmode));
  call(code_object, rmode);
}

Operand TurboAssembler::EntryFromBuiltinIndexAsOperand(Register builtin_index) {
#if defined(V8_COMPRESS_POINTERS) || defined(V8_31BIT_SMIS_ON_64BIT_ARCH)
  STATIC_ASSERT(kSmiShiftSize == 0);
  STATIC_ASSERT(kSmiTagSize == 1);
  STATIC_ASSERT(kSmiTag == 0);

  // The builtin_index register contains the builtin index as a Smi.
  // Untagging is folded into the indexing operand below (we use times_4 instead
  // of times_8 since smis are already shifted by one).
  return Operand(kRootRegister, builtin_index, times_4,
                 IsolateData::builtin_entry_table_offset());
#else   // defined(V8_COMPRESS_POINTERS) || defined(V8_31BIT_SMIS_ON_64BIT_ARCH)
  STATIC_ASSERT(kSmiShiftSize == 31);
  STATIC_ASSERT(kSmiTagSize == 1);
  STATIC_ASSERT(kSmiTag == 0);

  // The builtin_index register contains the builtin index as a Smi.
  SmiUntag(builtin_index, builtin_index);
  return Operand(kRootRegister, builtin_index, times_8,
                 IsolateData::builtin_entry_table_offset());
#endif  // defined(V8_COMPRESS_POINTERS) || defined(V8_31BIT_SMIS_ON_64BIT_ARCH)
}

void TurboAssembler::CallBuiltinByIndex(Register builtin_index) {
  Call(EntryFromBuiltinIndexAsOperand(builtin_index));
}

void TurboAssembler::CallBuiltin(int builtin_index) {
  DCHECK(Builtins::IsBuiltinId(builtin_index));
  DCHECK(FLAG_embedded_builtins);
  RecordCommentForOffHeapTrampoline(builtin_index);
  CHECK_NE(builtin_index, Builtins::kNoBuiltinId);
  EmbeddedData d = EmbeddedData::FromBlob();
  Address entry = d.InstructionStartOfBuiltin(builtin_index);
  Move(kScratchRegister, entry, RelocInfo::OFF_HEAP_TARGET);
  call(kScratchRegister);
}

void TurboAssembler::LoadCodeObjectEntry(Register destination,
                                         Register code_object) {
  // Code objects are called differently depending on whether we are generating
  // builtin code (which will later be embedded into the binary) or compiling
  // user JS code at runtime.
  // * Builtin code runs in --jitless mode and thus must not call into on-heap
  //   Code targets. Instead, we dispatch through the builtins entry table.
  // * Codegen at runtime does not have this restriction and we can use the
  //   shorter, branchless instruction sequence. The assumption here is that
  //   targets are usually generated code and not builtin Code objects.

  if (options().isolate_independent_code) {
    DCHECK(root_array_available());
    Label if_code_is_off_heap, out;

    // Check whether the Code object is an off-heap trampoline. If so, call its
    // (off-heap) entry point directly without going through the (on-heap)
    // trampoline.  Otherwise, just call the Code object as always.
    testl(FieldOperand(code_object, Code::kFlagsOffset),
          Immediate(Code::IsOffHeapTrampoline::kMask));
    j(not_equal, &if_code_is_off_heap);

    // Not an off-heap trampoline, the entry point is at
    // Code::raw_instruction_start().
    Move(destination, code_object);
    addq(destination, Immediate(Code::kHeaderSize - kHeapObjectTag));
    jmp(&out);

    // An off-heap trampoline, the entry point is loaded from the builtin entry
    // table.
    bind(&if_code_is_off_heap);
    movl(destination, FieldOperand(code_object, Code::kBuiltinIndexOffset));
    movq(destination,
         Operand(kRootRegister, destination, times_system_pointer_size,
                 IsolateData::builtin_entry_table_offset()));

    bind(&out);
  } else {
    Move(destination, code_object);
    addq(destination, Immediate(Code::kHeaderSize - kHeapObjectTag));
  }
}

void TurboAssembler::CallCodeObject(Register code_object) {
  LoadCodeObjectEntry(code_object, code_object);
  call(code_object);
}

void TurboAssembler::JumpCodeObject(Register code_object) {
  LoadCodeObjectEntry(code_object, code_object);
  jmp(code_object);
}

void TurboAssembler::RetpolineCall(Register reg) {
  Label setup_return, setup_target, inner_indirect_branch, capture_spec;

  jmp(&setup_return);  // Jump past the entire retpoline below.

  bind(&inner_indirect_branch);
  call(&setup_target);

  bind(&capture_spec);
  pause();
  jmp(&capture_spec);

  bind(&setup_target);
  movq(Operand(rsp, 0), reg);
  ret(0);

  bind(&setup_return);
  call(&inner_indirect_branch);  // Callee will return after this instruction.
}

void TurboAssembler::RetpolineCall(Address destination, RelocInfo::Mode rmode) {
  Move(kScratchRegister, destination, rmode);
  RetpolineCall(kScratchRegister);
}

void TurboAssembler::RetpolineJump(Register reg) {
  Label setup_target, capture_spec;

  call(&setup_target);

  bind(&capture_spec);
  pause();
  jmp(&capture_spec);

  bind(&setup_target);
  movq(Operand(rsp, 0), reg);
  ret(0);
}

void TurboAssembler::Pextrd(Register dst, XMMRegister src, int8_t imm8) {
  if (imm8 == 0) {
    Movd(dst, src);
    return;
  }
  if (CpuFeatures::IsSupported(SSE4_1)) {
    CpuFeatureScope sse_scope(this, SSE4_1);
    pextrd(dst, src, imm8);
    return;
  }
  DCHECK_EQ(1, imm8);
  movq(dst, src);
  shrq(dst, Immediate(32));
}

void TurboAssembler::Pinsrd(XMMRegister dst, Register src, int8_t imm8) {
  if (CpuFeatures::IsSupported(SSE4_1)) {
    CpuFeatureScope sse_scope(this, SSE4_1);
    pinsrd(dst, src, imm8);
    return;
  }
  Movd(kScratchDoubleReg, src);
  if (imm8 == 1) {
    punpckldq(dst, kScratchDoubleReg);
  } else {
    DCHECK_EQ(0, imm8);
    Movss(dst, kScratchDoubleReg);
  }
}

void TurboAssembler::Pinsrd(XMMRegister dst, Operand src, int8_t imm8) {
  if (CpuFeatures::IsSupported(SSE4_1)) {
    CpuFeatureScope sse_scope(this, SSE4_1);
    pinsrd(dst, src, imm8);
    return;
  }
  Movd(kScratchDoubleReg, src);
  if (imm8 == 1) {
    punpckldq(dst, kScratchDoubleReg);
  } else {
    DCHECK_EQ(0, imm8);
    Movss(dst, kScratchDoubleReg);
  }
}

void TurboAssembler::Psllq(XMMRegister dst, byte imm8) {
  if (CpuFeatures::IsSupported(AVX)) {
    CpuFeatureScope scope(this, AVX);
    vpsllq(dst, dst, imm8);
  } else {
    DCHECK(!IsEnabled(AVX));
    psllq(dst, imm8);
  }
}

void TurboAssembler::Psrlq(XMMRegister dst, byte imm8) {
  if (CpuFeatures::IsSupported(AVX)) {
    CpuFeatureScope scope(this, AVX);
    vpsrlq(dst, dst, imm8);
  } else {
    DCHECK(!IsEnabled(AVX));
    psrlq(dst, imm8);
  }
}

void TurboAssembler::Pslld(XMMRegister dst, byte imm8) {
  if (CpuFeatures::IsSupported(AVX)) {
    CpuFeatureScope scope(this, AVX);
    vpslld(dst, dst, imm8);
  } else {
    DCHECK(!IsEnabled(AVX));
    pslld(dst, imm8);
  }
}

void TurboAssembler::Psrld(XMMRegister dst, byte imm8) {
  if (CpuFeatures::IsSupported(AVX)) {
    CpuFeatureScope scope(this, AVX);
    vpsrld(dst, dst, imm8);
  } else {
    DCHECK(!IsEnabled(AVX));
    psrld(dst, imm8);
  }
}

void TurboAssembler::Lzcntl(Register dst, Register src) {
  if (CpuFeatures::IsSupported(LZCNT)) {
    CpuFeatureScope scope(this, LZCNT);
    lzcntl(dst, src);
    return;
  }
  Label not_zero_src;
  bsrl(dst, src);
  j(not_zero, &not_zero_src, Label::kNear);
  Set(dst, 63);  // 63^31 == 32
  bind(&not_zero_src);
  xorl(dst, Immediate(31));  // for x in [0..31], 31^x == 31 - x
}

void TurboAssembler::Lzcntl(Register dst, Operand src) {
  if (CpuFeatures::IsSupported(LZCNT)) {
    CpuFeatureScope scope(this, LZCNT);
    lzcntl(dst, src);
    return;
  }
  Label not_zero_src;
  bsrl(dst, src);
  j(not_zero, &not_zero_src, Label::kNear);
  Set(dst, 63);  // 63^31 == 32
  bind(&not_zero_src);
  xorl(dst, Immediate(31));  // for x in [0..31], 31^x == 31 - x
}

void TurboAssembler::Lzcntq(Register dst, Register src) {
  if (CpuFeatures::IsSupported(LZCNT)) {
    CpuFeatureScope scope(this, LZCNT);
    lzcntq(dst, src);
    return;
  }
  Label not_zero_src;
  bsrq(dst, src);
  j(not_zero, &not_zero_src, Label::kNear);
  Set(dst, 127);  // 127^63 == 64
  bind(&not_zero_src);
  xorl(dst, Immediate(63));  // for x in [0..63], 63^x == 63 - x
}

void TurboAssembler::Lzcntq(Register dst, Operand src) {
  if (CpuFeatures::IsSupported(LZCNT)) {
    CpuFeatureScope scope(this, LZCNT);
    lzcntq(dst, src);
    return;
  }
  Label not_zero_src;
  bsrq(dst, src);
  j(not_zero, &not_zero_src, Label::kNear);
  Set(dst, 127);  // 127^63 == 64
  bind(&not_zero_src);
  xorl(dst, Immediate(63));  // for x in [0..63], 63^x == 63 - x
}

void TurboAssembler::Tzcntq(Register dst, Register src) {
  if (CpuFeatures::IsSupported(BMI1)) {
    CpuFeatureScope scope(this, BMI1);
    tzcntq(dst, src);
    return;
  }
  Label not_zero_src;
  bsfq(dst, src);
  j(not_zero, &not_zero_src, Label::kNear);
  // Define the result of tzcnt(0) separately, because bsf(0) is undefined.
  Set(dst, 64);
  bind(&not_zero_src);
}

void TurboAssembler::Tzcntq(Register dst, Operand src) {
  if (CpuFeatures::IsSupported(BMI1)) {
    CpuFeatureScope scope(this, BMI1);
    tzcntq(dst, src);
    return;
  }
  Label not_zero_src;
  bsfq(dst, src);
  j(not_zero, &not_zero_src, Label::kNear);
  // Define the result of tzcnt(0) separately, because bsf(0) is undefined.
  Set(dst, 64);
  bind(&not_zero_src);
}

void TurboAssembler::Tzcntl(Register dst, Register src) {
  if (CpuFeatures::IsSupported(BMI1)) {
    CpuFeatureScope scope(this, BMI1);
    tzcntl(dst, src);
    return;
  }
  Label not_zero_src;
  bsfl(dst, src);
  j(not_zero, &not_zero_src, Label::kNear);
  Set(dst, 32);  // The result of tzcnt is 32 if src = 0.
  bind(&not_zero_src);
}

void TurboAssembler::Tzcntl(Register dst, Operand src) {
  if (CpuFeatures::IsSupported(BMI1)) {
    CpuFeatureScope scope(this, BMI1);
    tzcntl(dst, src);
    return;
  }
  Label not_zero_src;
  bsfl(dst, src);
  j(not_zero, &not_zero_src, Label::kNear);
  Set(dst, 32);  // The result of tzcnt is 32 if src = 0.
  bind(&not_zero_src);
}

void TurboAssembler::Popcntl(Register dst, Register src) {
  if (CpuFeatures::IsSupported(POPCNT)) {
    CpuFeatureScope scope(this, POPCNT);
    popcntl(dst, src);
    return;
  }
  UNREACHABLE();
}

void TurboAssembler::Popcntl(Register dst, Operand src) {
  if (CpuFeatures::IsSupported(POPCNT)) {
    CpuFeatureScope scope(this, POPCNT);
    popcntl(dst, src);
    return;
  }
  UNREACHABLE();
}

void TurboAssembler::Popcntq(Register dst, Register src) {
  if (CpuFeatures::IsSupported(POPCNT)) {
    CpuFeatureScope scope(this, POPCNT);
    popcntq(dst, src);
    return;
  }
  UNREACHABLE();
}

void TurboAssembler::Popcntq(Register dst, Operand src) {
  if (CpuFeatures::IsSupported(POPCNT)) {
    CpuFeatureScope scope(this, POPCNT);
    popcntq(dst, src);
    return;
  }
  UNREACHABLE();
}

// Order general registers are pushed by Pushad:
// rax, rcx, rdx, rbx, rsi, rdi, r8, r9, r11, r14, r15.
const int
    MacroAssembler::kSafepointPushRegisterIndices[Register::kNumRegisters] = {
        0, 1, 2, 3, -1, -1, 4, 5, 6, 7, -1, 8, 9, -1, 10, 11};

void MacroAssembler::PushStackHandler() {
  // Adjust this code if not the case.
  STATIC_ASSERT(StackHandlerConstants::kSize == 2 * kSystemPointerSize);
  STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0);

  Push(Immediate(0));  // Padding.

  // Link the current handler as the next handler.
  ExternalReference handler_address =
      ExternalReference::Create(IsolateAddressId::kHandlerAddress, isolate());
  Push(ExternalReferenceAsOperand(handler_address));

  // Set this new handler as the current one.
  movq(ExternalReferenceAsOperand(handler_address), rsp);
}

void MacroAssembler::PopStackHandler() {
  STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0);
  ExternalReference handler_address =
      ExternalReference::Create(IsolateAddressId::kHandlerAddress, isolate());
  Pop(ExternalReferenceAsOperand(handler_address));
  addq(rsp, Immediate(StackHandlerConstants::kSize - kSystemPointerSize));
}

void TurboAssembler::Ret() { ret(0); }

void TurboAssembler::Ret(int bytes_dropped, Register scratch) {
  if (is_uint16(bytes_dropped)) {
    ret(bytes_dropped);
  } else {
    PopReturnAddressTo(scratch);
    addq(rsp, Immediate(bytes_dropped));
    PushReturnAddressFrom(scratch);
    ret(0);
  }
}

void MacroAssembler::CmpObjectType(Register heap_object, InstanceType type,
                                   Register map) {
  LoadTaggedPointerField(map,
                         FieldOperand(heap_object, HeapObject::kMapOffset));
  CmpInstanceType(map, type);
}

void MacroAssembler::CmpInstanceType(Register map, InstanceType type) {
  cmpw(FieldOperand(map, Map::kInstanceTypeOffset), Immediate(type));
}

void MacroAssembler::AssertNotSmi(Register object) {
  if (emit_debug_code()) {
    Condition is_smi = CheckSmi(object);
    Check(NegateCondition(is_smi), AbortReason::kOperandIsASmi);
  }
}

void MacroAssembler::AssertSmi(Register object) {
  if (emit_debug_code()) {
    Condition is_smi = CheckSmi(object);
    Check(is_smi, AbortReason::kOperandIsNotASmi);
  }
}

void MacroAssembler::AssertSmi(Operand object) {
  if (emit_debug_code()) {
    Condition is_smi = CheckSmi(object);
    Check(is_smi, AbortReason::kOperandIsNotASmi);
  }
}

void TurboAssembler::AssertZeroExtended(Register int32_register) {
  if (emit_debug_code()) {
    DCHECK_NE(int32_register, kScratchRegister);
    movq(kScratchRegister, int64_t{0x0000000100000000});
    cmpq(kScratchRegister, int32_register);
    Check(above_equal, AbortReason::k32BitValueInRegisterIsNotZeroExtended);
  }
}

void MacroAssembler::AssertConstructor(Register object) {
  if (emit_debug_code()) {
    testb(object, Immediate(kSmiTagMask));
    Check(not_equal, AbortReason::kOperandIsASmiAndNotAConstructor);
    Push(object);
    LoadTaggedPointerField(object,
                           FieldOperand(object, HeapObject::kMapOffset));
    testb(FieldOperand(object, Map::kBitFieldOffset),
          Immediate(Map::IsConstructorBit::kMask));
    Pop(object);
    Check(not_zero, AbortReason::kOperandIsNotAConstructor);
  }
}

void MacroAssembler::AssertFunction(Register object) {
  if (emit_debug_code()) {
    testb(object, Immediate(kSmiTagMask));
    Check(not_equal, AbortReason::kOperandIsASmiAndNotAFunction);
    Push(object);
    CmpObjectType(object, JS_FUNCTION_TYPE, object);
    Pop(object);
    Check(equal, AbortReason::kOperandIsNotAFunction);
  }
}

void MacroAssembler::AssertBoundFunction(Register object) {
  if (emit_debug_code()) {
    testb(object, Immediate(kSmiTagMask));
    Check(not_equal, AbortReason::kOperandIsASmiAndNotABoundFunction);
    Push(object);
    CmpObjectType(object, JS_BOUND_FUNCTION_TYPE, object);
    Pop(object);
    Check(equal, AbortReason::kOperandIsNotABoundFunction);
  }
}

void MacroAssembler::AssertGeneratorObject(Register object) {
  if (!emit_debug_code()) return;
  testb(object, Immediate(kSmiTagMask));
  Check(not_equal, AbortReason::kOperandIsASmiAndNotAGeneratorObject);

  // Load map
  Register map = object;
  Push(object);
  LoadTaggedPointerField(map, FieldOperand(object, HeapObject::kMapOffset));

  Label do_check;
  // Check if JSGeneratorObject
  CmpInstanceType(map, JS_GENERATOR_OBJECT_TYPE);
  j(equal, &do_check);

  // Check if JSAsyncFunctionObject
  CmpInstanceType(map, JS_ASYNC_FUNCTION_OBJECT_TYPE);
  j(equal, &do_check);

  // Check if JSAsyncGeneratorObject
  CmpInstanceType(map, JS_ASYNC_GENERATOR_OBJECT_TYPE);

  bind(&do_check);
  // Restore generator object to register and perform assertion
  Pop(object);
  Check(equal, AbortReason::kOperandIsNotAGeneratorObject);
}

void MacroAssembler::AssertUndefinedOrAllocationSite(Register object) {
  if (emit_debug_code()) {
    Label done_checking;
    AssertNotSmi(object);
    Cmp(object, isolate()->factory()->undefined_value());
    j(equal, &done_checking);
    Cmp(FieldOperand(object, 0), isolate()->factory()->allocation_site_map());
    Assert(equal, AbortReason::kExpectedUndefinedOrCell);
    bind(&done_checking);
  }
}

void MacroAssembler::LoadWeakValue(Register in_out, Label* target_if_cleared) {
  cmpl(in_out, Immediate(kClearedWeakHeapObjectLower32));
  j(equal, target_if_cleared);

  andq(in_out, Immediate(~static_cast<int32_t>(kWeakHeapObjectMask)));
}

void MacroAssembler::IncrementCounter(StatsCounter* counter, int value) {
  DCHECK_GT(value, 0);
  if (FLAG_native_code_counters && counter->Enabled()) {
    Operand counter_operand =
        ExternalReferenceAsOperand(ExternalReference::Create(counter));
    // This operation has to be exactly 32-bit wide in case the external
    // reference table redirects the counter to a uint32_t dummy_stats_counter_
    // field.
    if (value == 1) {
      incl(counter_operand);
    } else {
      addl(counter_operand, Immediate(value));
    }
  }
}

void MacroAssembler::DecrementCounter(StatsCounter* counter, int value) {
  DCHECK_GT(value, 0);
  if (FLAG_native_code_counters && counter->Enabled()) {
    Operand counter_operand =
        ExternalReferenceAsOperand(ExternalReference::Create(counter));
    // This operation has to be exactly 32-bit wide in case the external
    // reference table redirects the counter to a uint32_t dummy_stats_counter_
    // field.
    if (value == 1) {
      decl(counter_operand);
    } else {
      subl(counter_operand, Immediate(value));
    }
  }
}

void MacroAssembler::MaybeDropFrames() {
  // Check whether we need to drop frames to restart a function on the stack.
  ExternalReference restart_fp =
      ExternalReference::debug_restart_fp_address(isolate());
  Load(rbx, restart_fp);
  testq(rbx, rbx);

  Label dont_drop;
  j(zero, &dont_drop, Label::kNear);
  Jump(BUILTIN_CODE(isolate(), FrameDropperTrampoline), RelocInfo::CODE_TARGET);

  bind(&dont_drop);
}

void TurboAssembler::PrepareForTailCall(const ParameterCount& callee_args_count,
                                        Register caller_args_count_reg,
                                        Register scratch0, Register scratch1) {
#if DEBUG
  if (callee_args_count.is_reg()) {
    DCHECK(!AreAliased(callee_args_count.reg(), caller_args_count_reg, scratch0,
                       scratch1));
  } else {
    DCHECK(!AreAliased(caller_args_count_reg, scratch0, scratch1));
  }
#endif

  // Calculate the destination address where we will put the return address
  // after we drop current frame.
  Register new_sp_reg = scratch0;
  if (callee_args_count.is_reg()) {
    subq(caller_args_count_reg, callee_args_count.reg());
    leaq(new_sp_reg,
         Operand(rbp, caller_args_count_reg, times_system_pointer_size,
                 StandardFrameConstants::kCallerPCOffset));
  } else {
    leaq(new_sp_reg,
         Operand(rbp, caller_args_count_reg, times_system_pointer_size,
                 StandardFrameConstants::kCallerPCOffset -
                     callee_args_count.immediate() * kSystemPointerSize));
  }

  if (FLAG_debug_code) {
    cmpq(rsp, new_sp_reg);
    Check(below, AbortReason::kStackAccessBelowStackPointer);
  }

  // Copy return address from caller's frame to current frame's return address
  // to avoid its trashing and let the following loop copy it to the right
  // place.
  Register tmp_reg = scratch1;
  movq(tmp_reg, Operand(rbp, StandardFrameConstants::kCallerPCOffset));
  movq(Operand(rsp, 0), tmp_reg);

  // Restore caller's frame pointer now as it could be overwritten by
  // the copying loop.
  movq(rbp, Operand(rbp, StandardFrameConstants::kCallerFPOffset));

  // +2 here is to copy both receiver and return address.
  Register count_reg = caller_args_count_reg;
  if (callee_args_count.is_reg()) {
    leaq(count_reg, Operand(callee_args_count.reg(), 2));
  } else {
    movq(count_reg, Immediate(callee_args_count.immediate() + 2));
    // TODO(ishell): Unroll copying loop for small immediate values.
  }

  // Now copy callee arguments to the caller frame going backwards to avoid
  // callee arguments corruption (source and destination areas could overlap).
  Label loop, entry;
  jmp(&entry, Label::kNear);
  bind(&loop);
  decq(count_reg);
  movq(tmp_reg, Operand(rsp, count_reg, times_system_pointer_size, 0));
  movq(Operand(new_sp_reg, count_reg, times_system_pointer_size, 0), tmp_reg);
  bind(&entry);
  cmpq(count_reg, Immediate(0));
  j(not_equal, &loop, Label::kNear);

  // Leave current frame.
  movq(rsp, new_sp_reg);
}

void MacroAssembler::InvokeFunction(Register function, Register new_target,
                                    const ParameterCount& actual,
                                    InvokeFlag flag) {
  LoadTaggedPointerField(
      rbx, FieldOperand(function, JSFunction::kSharedFunctionInfoOffset));
  movzxwq(rbx,
          FieldOperand(rbx, SharedFunctionInfo::kFormalParameterCountOffset));

  ParameterCount expected(rbx);
  InvokeFunction(function, new_target, expected, actual, flag);
}

void MacroAssembler::InvokeFunction(Register function, Register new_target,
                                    const ParameterCount& expected,
                                    const ParameterCount& actual,
                                    InvokeFlag flag) {
  DCHECK(function == rdi);
  LoadTaggedPointerField(rsi,
                         FieldOperand(function, JSFunction::kContextOffset));
  InvokeFunctionCode(rdi, new_target, expected, actual, flag);
}

void MacroAssembler::InvokeFunctionCode(Register function, Register new_target,
                                        const ParameterCount& expected,
                                        const ParameterCount& actual,
                                        InvokeFlag flag) {
  // You can't call a function without a valid frame.
  DCHECK(flag == JUMP_FUNCTION || has_frame());
  DCHECK(function == rdi);
  DCHECK_IMPLIES(new_target.is_valid(), new_target == rdx);

  // On function call, call into the debugger if necessary.
  CheckDebugHook(function, new_target, expected, actual);

  // Clear the new.target register if not given.
  if (!new_target.is_valid()) {
    LoadRoot(rdx, RootIndex::kUndefinedValue);
  }

  Label done;
  bool definitely_mismatches = false;
  InvokePrologue(expected, actual, &done, &definitely_mismatches, flag,
                 Label::kNear);
  if (!definitely_mismatches) {
    // We call indirectly through the code field in the function to
    // allow recompilation to take effect without changing any of the
    // call sites.
    static_assert(kJavaScriptCallCodeStartRegister == rcx, "ABI mismatch");
    LoadTaggedPointerField(rcx,
                           FieldOperand(function, JSFunction::kCodeOffset));
    if (flag == CALL_FUNCTION) {
      CallCodeObject(rcx);
    } else {
      DCHECK(flag == JUMP_FUNCTION);
      JumpCodeObject(rcx);
    }
    bind(&done);
  }
}

void MacroAssembler::InvokePrologue(const ParameterCount& expected,
                                    const ParameterCount& actual, Label* done,
                                    bool* definitely_mismatches,
                                    InvokeFlag flag,
                                    Label::Distance near_jump) {
  bool definitely_matches = false;
  *definitely_mismatches = false;
  Label invoke;
  if (expected.is_immediate()) {
    DCHECK(actual.is_immediate());
    Set(rax, actual.immediate());
    if (expected.immediate() == actual.immediate()) {
      definitely_matches = true;
    } else {
      if (expected.immediate() ==
          SharedFunctionInfo::kDontAdaptArgumentsSentinel) {
        // Don't worry about adapting arguments for built-ins that
        // don't want that done. Skip adaption code by making it look
        // like we have a match between expected and actual number of
        // arguments.
        definitely_matches = true;
      } else {
        *definitely_mismatches = true;
        Set(rbx, expected.immediate());
      }
    }
  } else {
    if (actual.is_immediate()) {
      // Expected is in register, actual is immediate. This is the
      // case when we invoke function values without going through the
      // IC mechanism.
      Set(rax, actual.immediate());
      cmpq(expected.reg(), Immediate(actual.immediate()));
      j(equal, &invoke, Label::kNear);
      DCHECK(expected.reg() == rbx);
    } else if (expected.reg() != actual.reg()) {
      // Both expected and actual are in (different) registers. This
      // is the case when we invoke functions using call and apply.
      cmpq(expected.reg(), actual.reg());
      j(equal, &invoke, Label::kNear);
      DCHECK(actual.reg() == rax);
      DCHECK(expected.reg() == rbx);
    } else {
      definitely_matches = true;
      Move(rax, actual.reg());
    }
  }

  if (!definitely_matches) {
    Handle<Code> adaptor = BUILTIN_CODE(isolate(), ArgumentsAdaptorTrampoline);
    if (flag == CALL_FUNCTION) {
      Call(adaptor, RelocInfo::CODE_TARGET);
      if (!*definitely_mismatches) {
        jmp(done, near_jump);
      }
    } else {
      Jump(adaptor, RelocInfo::CODE_TARGET);
    }
    bind(&invoke);
  }
}

void MacroAssembler::CheckDebugHook(Register fun, Register new_target,
                                    const ParameterCount& expected,
                                    const ParameterCount& actual) {
  Label skip_hook;
  ExternalReference debug_hook_active =
      ExternalReference::debug_hook_on_function_call_address(isolate());
  Operand debug_hook_active_operand =
      ExternalReferenceAsOperand(debug_hook_active);
  cmpb(debug_hook_active_operand, Immediate(0));
  j(equal, &skip_hook);

  {
    FrameScope frame(this,
                     has_frame() ? StackFrame::NONE : StackFrame::INTERNAL);
    if (expected.is_reg()) {
      SmiTag(expected.reg(), expected.reg());
      Push(expected.reg());
    }
    if (actual.is_reg()) {
      SmiTag(actual.reg(), actual.reg());
      Push(actual.reg());
      SmiUntag(actual.reg(), actual.reg());
    }
    if (new_target.is_valid()) {
      Push(new_target);
    }
    Push(fun);
    Push(fun);
    Push(StackArgumentsAccessor(rbp, actual).GetReceiverOperand());
    CallRuntime(Runtime::kDebugOnFunctionCall);
    Pop(fun);
    if (new_target.is_valid()) {
      Pop(new_target);
    }
    if (actual.is_reg()) {
      Pop(actual.reg());
      SmiUntag(actual.reg(), actual.reg());
    }
    if (expected.is_reg()) {
      Pop(expected.reg());
      SmiUntag(expected.reg(), expected.reg());
    }
  }
  bind(&skip_hook);
}

void TurboAssembler::StubPrologue(StackFrame::Type type) {
  pushq(rbp);  // Caller's frame pointer.
  movq(rbp, rsp);
  Push(Immediate(StackFrame::TypeToMarker(type)));
}

void TurboAssembler::Prologue() {
  pushq(rbp);  // Caller's frame pointer.
  movq(rbp, rsp);
  Push(rsi);  // Callee's context.
  Push(rdi);  // Callee's JS function.
}

void TurboAssembler::EnterFrame(StackFrame::Type type) {
  pushq(rbp);
  movq(rbp, rsp);
  Push(Immediate(StackFrame::TypeToMarker(type)));
}

void TurboAssembler::LeaveFrame(StackFrame::Type type) {
  if (emit_debug_code()) {
    cmpq(Operand(rbp, CommonFrameConstants::kContextOrFrameTypeOffset),
         Immediate(StackFrame::TypeToMarker(type)));
    Check(equal, AbortReason::kStackFrameTypesMustMatch);
  }
  movq(rsp, rbp);
  popq(rbp);
}

#ifdef V8_OS_WIN
void TurboAssembler::AllocateStackSpace(Register bytes_scratch) {
  // In windows, we cannot increment the stack size by more than one page
  // (minimum page size is 4KB) without accessing at least one byte on the
  // page. Check this:
  // https://msdn.microsoft.com/en-us/library/aa227153(v=vs.60).aspx.
  Label check_offset;
  Label touch_next_page;
  jmp(&check_offset);
  bind(&touch_next_page);
  subq(rsp, Immediate(kStackPageSize));
  // Just to touch the page, before we increment further.
  movb(Operand(rsp, 0), Immediate(0));
  subq(bytes_scratch, Immediate(kStackPageSize));

  bind(&check_offset);
  cmpq(bytes_scratch, Immediate(kStackPageSize));
  j(greater, &touch_next_page);

  subq(rsp, bytes_scratch);
}

void TurboAssembler::AllocateStackSpace(int bytes) {
  while (bytes > kStackPageSize) {
    subq(rsp, Immediate(kStackPageSize));
    movb(Operand(rsp, 0), Immediate(0));
    bytes -= kStackPageSize;
  }
  subq(rsp, Immediate(bytes));
}
#endif

void MacroAssembler::EnterExitFramePrologue(bool save_rax,
                                            StackFrame::Type frame_type) {
  DCHECK(frame_type == StackFrame::EXIT ||
         frame_type == StackFrame::BUILTIN_EXIT);

  // Set up the frame structure on the stack.
  // All constants are relative to the frame pointer of the exit frame.
  DCHECK_EQ(kFPOnStackSize + kPCOnStackSize,
            ExitFrameConstants::kCallerSPDisplacement);
  DCHECK_EQ(kFPOnStackSize, ExitFrameConstants::kCallerPCOffset);
  DCHECK_EQ(0 * kSystemPointerSize, ExitFrameConstants::kCallerFPOffset);
  pushq(rbp);
  movq(rbp, rsp);

  // Reserve room for entry stack pointer.
  Push(Immediate(StackFrame::TypeToMarker(frame_type)));
  DCHECK_EQ(-2 * kSystemPointerSize, ExitFrameConstants::kSPOffset);
  Push(Immediate(0));  // Saved entry sp, patched before call.

  // Save the frame pointer and the context in top.
  if (save_rax) {
    movq(r14, rax);  // Backup rax in callee-save register.
  }

  Store(
      ExternalReference::Create(IsolateAddressId::kCEntryFPAddress, isolate()),
      rbp);
  Store(ExternalReference::Create(IsolateAddressId::kContextAddress, isolate()),
        rsi);
  Store(
      ExternalReference::Create(IsolateAddressId::kCFunctionAddress, isolate()),
      rbx);
}

void MacroAssembler::EnterExitFrameEpilogue(int arg_stack_space,
                                            bool save_doubles) {
#ifdef _WIN64
  const int kShadowSpace = 4;
  arg_stack_space += kShadowSpace;
#endif
  // Optionally save all XMM registers.
  if (save_doubles) {
    int space = XMMRegister::kNumRegisters * kDoubleSize +
                arg_stack_space * kSystemPointerSize;
    AllocateStackSpace(space);
    int offset = -ExitFrameConstants::kFixedFrameSizeFromFp;
    const RegisterConfiguration* config = RegisterConfiguration::Default();
    for (int i = 0; i < config->num_allocatable_double_registers(); ++i) {
      DoubleRegister reg =
          DoubleRegister::from_code(config->GetAllocatableDoubleCode(i));
      Movsd(Operand(rbp, offset - ((i + 1) * kDoubleSize)), reg);
    }
  } else if (arg_stack_space > 0) {
    AllocateStackSpace(arg_stack_space * kSystemPointerSize);
  }

  // Get the required frame alignment for the OS.
  const int kFrameAlignment = base::OS::ActivationFrameAlignment();
  if (kFrameAlignment > 0) {
    DCHECK(base::bits::IsPowerOfTwo(kFrameAlignment));
    DCHECK(is_int8(kFrameAlignment));
    andq(rsp, Immediate(-kFrameAlignment));
  }

  // Patch the saved entry sp.
  movq(Operand(rbp, ExitFrameConstants::kSPOffset), rsp);
}

void MacroAssembler::EnterExitFrame(int arg_stack_space, bool save_doubles,
                                    StackFrame::Type frame_type) {
  EnterExitFramePrologue(true, frame_type);

  // Set up argv in callee-saved register r15. It is reused in LeaveExitFrame,
  // so it must be retained across the C-call.
  int offset = StandardFrameConstants::kCallerSPOffset - kSystemPointerSize;
  leaq(r15, Operand(rbp, r14, times_system_pointer_size, offset));

  EnterExitFrameEpilogue(arg_stack_space, save_doubles);
}

void MacroAssembler::EnterApiExitFrame(int arg_stack_space) {
  EnterExitFramePrologue(false, StackFrame::EXIT);
  EnterExitFrameEpilogue(arg_stack_space, false);
}

void MacroAssembler::LeaveExitFrame(bool save_doubles, bool pop_arguments) {
  // Registers:
  // r15 : argv
  if (save_doubles) {
    int offset = -ExitFrameConstants::kFixedFrameSizeFromFp;
    const RegisterConfiguration* config = RegisterConfiguration::Default();
    for (int i = 0; i < config->num_allocatable_double_registers(); ++i) {
      DoubleRegister reg =
          DoubleRegister::from_code(config->GetAllocatableDoubleCode(i));
      Movsd(reg, Operand(rbp, offset - ((i + 1) * kDoubleSize)));
    }
  }

  if (pop_arguments) {
    // Get the return address from the stack and restore the frame pointer.
    movq(rcx, Operand(rbp, kFPOnStackSize));
    movq(rbp, Operand(rbp, 0 * kSystemPointerSize));

    // Drop everything up to and including the arguments and the receiver
    // from the caller stack.
    leaq(rsp, Operand(r15, 1 * kSystemPointerSize));

    PushReturnAddressFrom(rcx);
  } else {
    // Otherwise just leave the exit frame.
    leave();
  }

  LeaveExitFrameEpilogue();
}

void MacroAssembler::LeaveApiExitFrame() {
  movq(rsp, rbp);
  popq(rbp);

  LeaveExitFrameEpilogue();
}

void MacroAssembler::LeaveExitFrameEpilogue() {
  // Restore current context from top and clear it in debug mode.
  ExternalReference context_address =
      ExternalReference::Create(IsolateAddressId::kContextAddress, isolate());
  Operand context_operand = ExternalReferenceAsOperand(context_address);
  movq(rsi, context_operand);
#ifdef DEBUG
  movq(context_operand, Immediate(Context::kInvalidContext));
#endif

  // Clear the top frame.
  ExternalReference c_entry_fp_address =
      ExternalReference::Create(IsolateAddressId::kCEntryFPAddress, isolate());
  Operand c_entry_fp_operand = ExternalReferenceAsOperand(c_entry_fp_address);
  movq(c_entry_fp_operand, Immediate(0));
}

#ifdef _WIN64
static const int kRegisterPassedArguments = 4;
#else
static const int kRegisterPassedArguments = 6;
#endif

void MacroAssembler::LoadNativeContextSlot(int index, Register dst) {
  LoadTaggedPointerField(dst, NativeContextOperand());
  LoadTaggedPointerField(dst, ContextOperand(dst, index));
}

int TurboAssembler::ArgumentStackSlotsForCFunctionCall(int num_arguments) {
  // On Windows 64 stack slots are reserved by the caller for all arguments
  // including the ones passed in registers, and space is always allocated for
  // the four register arguments even if the function takes fewer than four
  // arguments.
  // On AMD64 ABI (Linux/Mac) the first six arguments are passed in registers
  // and the caller does not reserve stack slots for them.
  DCHECK_GE(num_arguments, 0);
#ifdef _WIN64
  const int kMinimumStackSlots = kRegisterPassedArguments;
  if (num_arguments < kMinimumStackSlots) return kMinimumStackSlots;
  return num_arguments;
#else
  if (num_arguments < kRegisterPassedArguments) return 0;
  return num_arguments - kRegisterPassedArguments;
#endif
}

void TurboAssembler::PrepareCallCFunction(int num_arguments) {
  int frame_alignment = base::OS::ActivationFrameAlignment();
  DCHECK_NE(frame_alignment, 0);
  DCHECK_GE(num_arguments, 0);

  // Make stack end at alignment and allocate space for arguments and old rsp.
  movq(kScratchRegister, rsp);
  DCHECK(base::bits::IsPowerOfTwo(frame_alignment));
  int argument_slots_on_stack =
      ArgumentStackSlotsForCFunctionCall(num_arguments);
  AllocateStackSpace((argument_slots_on_stack + 1) * kSystemPointerSize);
  andq(rsp, Immediate(-frame_alignment));
  movq(Operand(rsp, argument_slots_on_stack * kSystemPointerSize),
       kScratchRegister);
}

void TurboAssembler::CallCFunction(ExternalReference function,
                                   int num_arguments) {
  LoadAddress(rax, function);
  CallCFunction(rax, num_arguments);
}

void TurboAssembler::CallCFunction(Register function, int num_arguments) {
  DCHECK_LE(num_arguments, kMaxCParameters);
  DCHECK(has_frame());
  // Check stack alignment.
  if (emit_debug_code()) {
    CheckStackAlignment();
  }

  // Save the frame pointer and PC so that the stack layout remains iterable,
  // even without an ExitFrame which normally exists between JS and C frames.
  if (isolate() != nullptr) {
    Label get_pc;
    DCHECK(!AreAliased(kScratchRegister, function));
    leaq(kScratchRegister, Operand(&get_pc, 0));
    bind(&get_pc);
    movq(ExternalReferenceAsOperand(
             ExternalReference::fast_c_call_caller_pc_address(isolate())),
         kScratchRegister);
    movq(ExternalReferenceAsOperand(
             ExternalReference::fast_c_call_caller_fp_address(isolate())),
         rbp);
  }

  call(function);

  if (isolate() != nullptr) {
    // We don't unset the PC; the FP is the source of truth.
    movq(ExternalReferenceAsOperand(
             ExternalReference::fast_c_call_caller_fp_address(isolate())),
         Immediate(0));
  }

  DCHECK_NE(base::OS::ActivationFrameAlignment(), 0);
  DCHECK_GE(num_arguments, 0);
  int argument_slots_on_stack =
      ArgumentStackSlotsForCFunctionCall(num_arguments);
  movq(rsp, Operand(rsp, argument_slots_on_stack * kSystemPointerSize));
}

void TurboAssembler::CheckPageFlag(Register object, Register scratch, int mask,
                                   Condition cc, Label* condition_met,
                                   Label::Distance condition_met_distance) {
  DCHECK(cc == zero || cc == not_zero);
  if (scratch == object) {
    andq(scratch, Immediate(~kPageAlignmentMask));
  } else {
    movq(scratch, Immediate(~kPageAlignmentMask));
    andq(scratch, object);
  }
  if (mask < (1 << kBitsPerByte)) {
    testb(Operand(scratch, MemoryChunk::kFlagsOffset),
          Immediate(static_cast<uint8_t>(mask)));
  } else {
    testl(Operand(scratch, MemoryChunk::kFlagsOffset), Immediate(mask));
  }
  j(cc, condition_met, condition_met_distance);
}

void TurboAssembler::ComputeCodeStartAddress(Register dst) {
  Label current;
  bind(&current);
  int pc = pc_offset();
  // Load effective address to get the address of the current instruction.
  leaq(dst, Operand(&current, -pc));
}

void TurboAssembler::ResetSpeculationPoisonRegister() {
  // TODO(tebbi): Perhaps, we want to put an lfence here.
  Set(kSpeculationPoisonRegister, -1);
}

void TurboAssembler::CallForDeoptimization(Address target, int deopt_id) {
  NoRootArrayScope no_root_array(this);
  // Save the deopt id in r13 (we don't need the roots array from now on).
  movq(r13, Immediate(deopt_id));
  call(target, RelocInfo::RUNTIME_ENTRY);
}

}  // namespace internal
}  // namespace v8

#endif  // V8_TARGET_ARCH_X64

ZeroDay Forums Mini