���� JFIF �� � ( %"1"%)+...383,7(-.-
![]() Server : Apache/2.4.6 (CentOS) OpenSSL/1.0.2k-fips PHP/7.4.20 System : Linux st2.domain.com 3.10.0-1127.10.1.el7.x86_64 #1 SMP Wed Jun 3 14:28:03 UTC 2020 x86_64 User : apache ( 48) PHP Version : 7.4.20 Disable Function : NONE Directory : /home/real/node-v13.0.1/deps/v8/src/compiler/backend/arm/ |
// Copyright 2014 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "src/base/adapters.h" #include "src/base/bits.h" #include "src/base/enum-set.h" #include "src/compiler/backend/instruction-selector-impl.h" #include "src/compiler/node-matchers.h" #include "src/compiler/node-properties.h" namespace v8 { namespace internal { namespace compiler { // Adds Arm-specific methods for generating InstructionOperands. class ArmOperandGenerator : public OperandGenerator { public: explicit ArmOperandGenerator(InstructionSelector* selector) : OperandGenerator(selector) {} bool CanBeImmediate(int32_t value) const { return Assembler::ImmediateFitsAddrMode1Instruction(value); } bool CanBeImmediate(uint32_t value) const { return CanBeImmediate(bit_cast<int32_t>(value)); } bool CanBeImmediate(Node* node, InstructionCode opcode) { Int32Matcher m(node); if (!m.HasValue()) return false; int32_t value = m.Value(); switch (ArchOpcodeField::decode(opcode)) { case kArmAnd: case kArmMov: case kArmMvn: case kArmBic: return CanBeImmediate(value) || CanBeImmediate(~value); case kArmAdd: case kArmSub: case kArmCmp: case kArmCmn: return CanBeImmediate(value) || CanBeImmediate(-value); case kArmTst: case kArmTeq: case kArmOrr: case kArmEor: case kArmRsb: return CanBeImmediate(value); case kArmVldrF32: case kArmVstrF32: case kArmVldrF64: case kArmVstrF64: return value >= -1020 && value <= 1020 && (value % 4) == 0; case kArmLdrb: case kArmLdrsb: case kArmStrb: case kArmLdr: case kArmStr: return value >= -4095 && value <= 4095; case kArmLdrh: case kArmLdrsh: case kArmStrh: return value >= -255 && value <= 255; default: break; } return false; } }; namespace { void VisitRR(InstructionSelector* selector, ArchOpcode opcode, Node* node) { ArmOperandGenerator g(selector); selector->Emit(opcode, g.DefineAsRegister(node), g.UseRegister(node->InputAt(0))); } void VisitRRR(InstructionSelector* selector, ArchOpcode opcode, Node* node) { ArmOperandGenerator g(selector); selector->Emit(opcode, g.DefineAsRegister(node), g.UseRegister(node->InputAt(0)), g.UseRegister(node->InputAt(1))); } void VisitSimdShiftRRR(InstructionSelector* selector, ArchOpcode opcode, Node* node) { ArmOperandGenerator g(selector); InstructionOperand temps[] = {g.TempSimd128Register()}; selector->Emit(opcode, g.DefineAsRegister(node), g.UseRegister(node->InputAt(0)), g.UseRegister(node->InputAt(1)), arraysize(temps), temps); } void VisitRRRShuffle(InstructionSelector* selector, ArchOpcode opcode, Node* node) { ArmOperandGenerator g(selector); // Swap inputs to save an instruction in the CodeGenerator for High ops. if (opcode == kArmS32x4ZipRight || opcode == kArmS32x4UnzipRight || opcode == kArmS32x4TransposeRight || opcode == kArmS16x8ZipRight || opcode == kArmS16x8UnzipRight || opcode == kArmS16x8TransposeRight || opcode == kArmS8x16ZipRight || opcode == kArmS8x16UnzipRight || opcode == kArmS8x16TransposeRight) { Node* in0 = node->InputAt(0); Node* in1 = node->InputAt(1); node->ReplaceInput(0, in1); node->ReplaceInput(1, in0); } // Use DefineSameAsFirst for binary ops that clobber their inputs, e.g. the // NEON vzip, vuzp, and vtrn instructions. selector->Emit(opcode, g.DefineSameAsFirst(node), g.UseRegister(node->InputAt(0)), g.UseRegister(node->InputAt(1))); } void VisitRRI(InstructionSelector* selector, ArchOpcode opcode, Node* node) { ArmOperandGenerator g(selector); int32_t imm = OpParameter<int32_t>(node->op()); selector->Emit(opcode, g.DefineAsRegister(node), g.UseRegister(node->InputAt(0)), g.UseImmediate(imm)); } void VisitRRIR(InstructionSelector* selector, ArchOpcode opcode, Node* node) { ArmOperandGenerator g(selector); int32_t imm = OpParameter<int32_t>(node->op()); selector->Emit(opcode, g.DefineAsRegister(node), g.UseRegister(node->InputAt(0)), g.UseImmediate(imm), g.UseRegister(node->InputAt(1))); } template <IrOpcode::Value kOpcode, int kImmMin, int kImmMax, AddressingMode kImmMode, AddressingMode kRegMode> bool TryMatchShift(InstructionSelector* selector, InstructionCode* opcode_return, Node* node, InstructionOperand* value_return, InstructionOperand* shift_return) { ArmOperandGenerator g(selector); if (node->opcode() == kOpcode) { Int32BinopMatcher m(node); *value_return = g.UseRegister(m.left().node()); if (m.right().IsInRange(kImmMin, kImmMax)) { *opcode_return |= AddressingModeField::encode(kImmMode); *shift_return = g.UseImmediate(m.right().node()); } else { *opcode_return |= AddressingModeField::encode(kRegMode); *shift_return = g.UseRegister(m.right().node()); } return true; } return false; } template <IrOpcode::Value kOpcode, int kImmMin, int kImmMax, AddressingMode kImmMode> bool TryMatchShiftImmediate(InstructionSelector* selector, InstructionCode* opcode_return, Node* node, InstructionOperand* value_return, InstructionOperand* shift_return) { ArmOperandGenerator g(selector); if (node->opcode() == kOpcode) { Int32BinopMatcher m(node); if (m.right().IsInRange(kImmMin, kImmMax)) { *opcode_return |= AddressingModeField::encode(kImmMode); *value_return = g.UseRegister(m.left().node()); *shift_return = g.UseImmediate(m.right().node()); return true; } } return false; } bool TryMatchROR(InstructionSelector* selector, InstructionCode* opcode_return, Node* node, InstructionOperand* value_return, InstructionOperand* shift_return) { return TryMatchShift<IrOpcode::kWord32Ror, 1, 31, kMode_Operand2_R_ROR_I, kMode_Operand2_R_ROR_R>(selector, opcode_return, node, value_return, shift_return); } bool TryMatchASR(InstructionSelector* selector, InstructionCode* opcode_return, Node* node, InstructionOperand* value_return, InstructionOperand* shift_return) { return TryMatchShift<IrOpcode::kWord32Sar, 1, 32, kMode_Operand2_R_ASR_I, kMode_Operand2_R_ASR_R>(selector, opcode_return, node, value_return, shift_return); } bool TryMatchLSL(InstructionSelector* selector, InstructionCode* opcode_return, Node* node, InstructionOperand* value_return, InstructionOperand* shift_return) { return TryMatchShift<IrOpcode::kWord32Shl, 0, 31, kMode_Operand2_R_LSL_I, kMode_Operand2_R_LSL_R>(selector, opcode_return, node, value_return, shift_return); } bool TryMatchLSLImmediate(InstructionSelector* selector, InstructionCode* opcode_return, Node* node, InstructionOperand* value_return, InstructionOperand* shift_return) { return TryMatchShiftImmediate<IrOpcode::kWord32Shl, 0, 31, kMode_Operand2_R_LSL_I>( selector, opcode_return, node, value_return, shift_return); } bool TryMatchLSR(InstructionSelector* selector, InstructionCode* opcode_return, Node* node, InstructionOperand* value_return, InstructionOperand* shift_return) { return TryMatchShift<IrOpcode::kWord32Shr, 1, 32, kMode_Operand2_R_LSR_I, kMode_Operand2_R_LSR_R>(selector, opcode_return, node, value_return, shift_return); } bool TryMatchShift(InstructionSelector* selector, InstructionCode* opcode_return, Node* node, InstructionOperand* value_return, InstructionOperand* shift_return) { return ( TryMatchASR(selector, opcode_return, node, value_return, shift_return) || TryMatchLSL(selector, opcode_return, node, value_return, shift_return) || TryMatchLSR(selector, opcode_return, node, value_return, shift_return) || TryMatchROR(selector, opcode_return, node, value_return, shift_return)); } bool TryMatchImmediateOrShift(InstructionSelector* selector, InstructionCode* opcode_return, Node* node, size_t* input_count_return, InstructionOperand* inputs) { ArmOperandGenerator g(selector); if (g.CanBeImmediate(node, *opcode_return)) { *opcode_return |= AddressingModeField::encode(kMode_Operand2_I); inputs[0] = g.UseImmediate(node); *input_count_return = 1; return true; } if (TryMatchShift(selector, opcode_return, node, &inputs[0], &inputs[1])) { *input_count_return = 2; return true; } return false; } void VisitBinop(InstructionSelector* selector, Node* node, InstructionCode opcode, InstructionCode reverse_opcode, FlagsContinuation* cont) { ArmOperandGenerator g(selector); Int32BinopMatcher m(node); InstructionOperand inputs[3]; size_t input_count = 0; InstructionOperand outputs[1]; size_t output_count = 0; if (m.left().node() == m.right().node()) { // If both inputs refer to the same operand, enforce allocating a register // for both of them to ensure that we don't end up generating code like // this: // // mov r0, r1, asr #16 // adds r0, r0, r1, asr #16 // bvs label InstructionOperand const input = g.UseRegister(m.left().node()); opcode |= AddressingModeField::encode(kMode_Operand2_R); inputs[input_count++] = input; inputs[input_count++] = input; } else if (TryMatchImmediateOrShift(selector, &opcode, m.right().node(), &input_count, &inputs[1])) { inputs[0] = g.UseRegister(m.left().node()); input_count++; } else if (TryMatchImmediateOrShift(selector, &reverse_opcode, m.left().node(), &input_count, &inputs[1])) { inputs[0] = g.UseRegister(m.right().node()); opcode = reverse_opcode; input_count++; } else { opcode |= AddressingModeField::encode(kMode_Operand2_R); inputs[input_count++] = g.UseRegister(m.left().node()); inputs[input_count++] = g.UseRegister(m.right().node()); } outputs[output_count++] = g.DefineAsRegister(node); DCHECK_NE(0u, input_count); DCHECK_EQ(1u, output_count); DCHECK_GE(arraysize(inputs), input_count); DCHECK_GE(arraysize(outputs), output_count); DCHECK_NE(kMode_None, AddressingModeField::decode(opcode)); selector->EmitWithContinuation(opcode, output_count, outputs, input_count, inputs, cont); } void VisitBinop(InstructionSelector* selector, Node* node, InstructionCode opcode, InstructionCode reverse_opcode) { FlagsContinuation cont; VisitBinop(selector, node, opcode, reverse_opcode, &cont); } void EmitDiv(InstructionSelector* selector, ArchOpcode div_opcode, ArchOpcode f64i32_opcode, ArchOpcode i32f64_opcode, InstructionOperand result_operand, InstructionOperand left_operand, InstructionOperand right_operand) { ArmOperandGenerator g(selector); if (selector->IsSupported(SUDIV)) { selector->Emit(div_opcode, result_operand, left_operand, right_operand); return; } InstructionOperand left_double_operand = g.TempDoubleRegister(); InstructionOperand right_double_operand = g.TempDoubleRegister(); InstructionOperand result_double_operand = g.TempDoubleRegister(); selector->Emit(f64i32_opcode, left_double_operand, left_operand); selector->Emit(f64i32_opcode, right_double_operand, right_operand); selector->Emit(kArmVdivF64, result_double_operand, left_double_operand, right_double_operand); selector->Emit(i32f64_opcode, result_operand, result_double_operand); } void VisitDiv(InstructionSelector* selector, Node* node, ArchOpcode div_opcode, ArchOpcode f64i32_opcode, ArchOpcode i32f64_opcode) { ArmOperandGenerator g(selector); Int32BinopMatcher m(node); EmitDiv(selector, div_opcode, f64i32_opcode, i32f64_opcode, g.DefineAsRegister(node), g.UseRegister(m.left().node()), g.UseRegister(m.right().node())); } void VisitMod(InstructionSelector* selector, Node* node, ArchOpcode div_opcode, ArchOpcode f64i32_opcode, ArchOpcode i32f64_opcode) { ArmOperandGenerator g(selector); Int32BinopMatcher m(node); InstructionOperand div_operand = g.TempRegister(); InstructionOperand result_operand = g.DefineAsRegister(node); InstructionOperand left_operand = g.UseRegister(m.left().node()); InstructionOperand right_operand = g.UseRegister(m.right().node()); EmitDiv(selector, div_opcode, f64i32_opcode, i32f64_opcode, div_operand, left_operand, right_operand); if (selector->IsSupported(ARMv7)) { selector->Emit(kArmMls, result_operand, div_operand, right_operand, left_operand); } else { InstructionOperand mul_operand = g.TempRegister(); selector->Emit(kArmMul, mul_operand, div_operand, right_operand); selector->Emit(kArmSub | AddressingModeField::encode(kMode_Operand2_R), result_operand, left_operand, mul_operand); } } void EmitLoad(InstructionSelector* selector, InstructionCode opcode, InstructionOperand* output, Node* base, Node* index) { ArmOperandGenerator g(selector); InstructionOperand inputs[3]; size_t input_count = 2; inputs[0] = g.UseRegister(base); if (g.CanBeImmediate(index, opcode)) { inputs[1] = g.UseImmediate(index); opcode |= AddressingModeField::encode(kMode_Offset_RI); } else if ((opcode == kArmLdr) && TryMatchLSLImmediate(selector, &opcode, index, &inputs[1], &inputs[2])) { input_count = 3; } else { inputs[1] = g.UseRegister(index); opcode |= AddressingModeField::encode(kMode_Offset_RR); } selector->Emit(opcode, 1, output, input_count, inputs); } void EmitStore(InstructionSelector* selector, InstructionCode opcode, size_t input_count, InstructionOperand* inputs, Node* index) { ArmOperandGenerator g(selector); if (g.CanBeImmediate(index, opcode)) { inputs[input_count++] = g.UseImmediate(index); opcode |= AddressingModeField::encode(kMode_Offset_RI); } else if ((opcode == kArmStr) && TryMatchLSLImmediate(selector, &opcode, index, &inputs[2], &inputs[3])) { input_count = 4; } else { inputs[input_count++] = g.UseRegister(index); opcode |= AddressingModeField::encode(kMode_Offset_RR); } selector->Emit(opcode, 0, nullptr, input_count, inputs); } void VisitPairAtomicBinOp(InstructionSelector* selector, Node* node, ArchOpcode opcode) { ArmOperandGenerator g(selector); Node* base = node->InputAt(0); Node* index = node->InputAt(1); Node* value = node->InputAt(2); Node* value_high = node->InputAt(3); AddressingMode addressing_mode = kMode_Offset_RR; InstructionOperand inputs[] = { g.UseUniqueRegister(value), g.UseUniqueRegister(value_high), g.UseUniqueRegister(base), g.UseUniqueRegister(index)}; Node* projection0 = NodeProperties::FindProjection(node, 0); Node* projection1 = NodeProperties::FindProjection(node, 1); InstructionCode code = opcode | AddressingModeField::encode(addressing_mode); if (projection1) { InstructionOperand outputs[] = {g.DefineAsFixed(projection0, r2), g.DefineAsFixed(projection1, r3)}; InstructionOperand temps[] = {g.TempRegister(), g.TempRegister(r6), g.TempRegister(r7), g.TempRegister()}; selector->Emit(code, arraysize(outputs), outputs, arraysize(inputs), inputs, arraysize(temps), temps); } else if (projection0) { InstructionOperand outputs[] = {g.DefineAsFixed(projection0, r2)}; InstructionOperand temps[] = {g.TempRegister(), g.TempRegister(r6), g.TempRegister(r7), g.TempRegister(), g.TempRegister(r3)}; selector->Emit(code, arraysize(outputs), outputs, arraysize(inputs), inputs, arraysize(temps), temps); } else { InstructionOperand temps[] = {g.TempRegister(), g.TempRegister(r6), g.TempRegister(r7), g.TempRegister(), g.TempRegister(r2), g.TempRegister(r3)}; selector->Emit(code, 0, nullptr, arraysize(inputs), inputs, arraysize(temps), temps); } } } // namespace void InstructionSelector::VisitStackSlot(Node* node) { StackSlotRepresentation rep = StackSlotRepresentationOf(node->op()); int slot = frame_->AllocateSpillSlot(rep.size()); OperandGenerator g(this); Emit(kArchStackSlot, g.DefineAsRegister(node), sequence()->AddImmediate(Constant(slot)), 0, nullptr); } void InstructionSelector::VisitAbortCSAAssert(Node* node) { ArmOperandGenerator g(this); Emit(kArchAbortCSAAssert, g.NoOutput(), g.UseFixed(node->InputAt(0), r1)); } void InstructionSelector::VisitLoad(Node* node) { LoadRepresentation load_rep = LoadRepresentationOf(node->op()); ArmOperandGenerator g(this); Node* base = node->InputAt(0); Node* index = node->InputAt(1); InstructionCode opcode = kArchNop; switch (load_rep.representation()) { case MachineRepresentation::kFloat32: opcode = kArmVldrF32; break; case MachineRepresentation::kFloat64: opcode = kArmVldrF64; break; case MachineRepresentation::kBit: // Fall through. case MachineRepresentation::kWord8: opcode = load_rep.IsUnsigned() ? kArmLdrb : kArmLdrsb; break; case MachineRepresentation::kWord16: opcode = load_rep.IsUnsigned() ? kArmLdrh : kArmLdrsh; break; case MachineRepresentation::kTaggedSigned: // Fall through. case MachineRepresentation::kTaggedPointer: // Fall through. case MachineRepresentation::kTagged: // Fall through. case MachineRepresentation::kWord32: opcode = kArmLdr; break; case MachineRepresentation::kSimd128: opcode = kArmVld1S128; break; case MachineRepresentation::kCompressedSigned: // Fall through. case MachineRepresentation::kCompressedPointer: // Fall through. case MachineRepresentation::kCompressed: // Fall through. case MachineRepresentation::kWord64: // Fall through. case MachineRepresentation::kNone: UNREACHABLE(); } if (node->opcode() == IrOpcode::kPoisonedLoad) { CHECK_NE(poisoning_level_, PoisoningMitigationLevel::kDontPoison); opcode |= MiscField::encode(kMemoryAccessPoisoned); } InstructionOperand output = g.DefineAsRegister(node); EmitLoad(this, opcode, &output, base, index); } void InstructionSelector::VisitPoisonedLoad(Node* node) { VisitLoad(node); } void InstructionSelector::VisitProtectedLoad(Node* node) { // TODO(eholk) UNIMPLEMENTED(); } void InstructionSelector::VisitStore(Node* node) { ArmOperandGenerator g(this); Node* base = node->InputAt(0); Node* index = node->InputAt(1); Node* value = node->InputAt(2); StoreRepresentation store_rep = StoreRepresentationOf(node->op()); WriteBarrierKind write_barrier_kind = store_rep.write_barrier_kind(); MachineRepresentation rep = store_rep.representation(); if (write_barrier_kind != kNoWriteBarrier && V8_LIKELY(!FLAG_disable_write_barriers)) { DCHECK(CanBeTaggedPointer(rep)); AddressingMode addressing_mode; InstructionOperand inputs[3]; size_t input_count = 0; inputs[input_count++] = g.UseUniqueRegister(base); // OutOfLineRecordWrite uses the index in an 'add' instruction as well as // for the store itself, so we must check compatibility with both. if (g.CanBeImmediate(index, kArmAdd) && g.CanBeImmediate(index, kArmStr)) { inputs[input_count++] = g.UseImmediate(index); addressing_mode = kMode_Offset_RI; } else { inputs[input_count++] = g.UseUniqueRegister(index); addressing_mode = kMode_Offset_RR; } inputs[input_count++] = g.UseUniqueRegister(value); RecordWriteMode record_write_mode = WriteBarrierKindToRecordWriteMode(write_barrier_kind); InstructionCode code = kArchStoreWithWriteBarrier; code |= AddressingModeField::encode(addressing_mode); code |= MiscField::encode(static_cast<int>(record_write_mode)); Emit(code, 0, nullptr, input_count, inputs); } else { InstructionCode opcode = kArchNop; switch (rep) { case MachineRepresentation::kFloat32: opcode = kArmVstrF32; break; case MachineRepresentation::kFloat64: opcode = kArmVstrF64; break; case MachineRepresentation::kBit: // Fall through. case MachineRepresentation::kWord8: opcode = kArmStrb; break; case MachineRepresentation::kWord16: opcode = kArmStrh; break; case MachineRepresentation::kTaggedSigned: // Fall through. case MachineRepresentation::kTaggedPointer: // Fall through. case MachineRepresentation::kTagged: // Fall through. case MachineRepresentation::kWord32: opcode = kArmStr; break; case MachineRepresentation::kSimd128: opcode = kArmVst1S128; break; case MachineRepresentation::kCompressedSigned: // Fall through. case MachineRepresentation::kCompressedPointer: // Fall through. case MachineRepresentation::kCompressed: // Fall through. case MachineRepresentation::kWord64: // Fall through. case MachineRepresentation::kNone: UNREACHABLE(); return; } InstructionOperand inputs[4]; size_t input_count = 0; inputs[input_count++] = g.UseRegister(value); inputs[input_count++] = g.UseRegister(base); EmitStore(this, opcode, input_count, inputs, index); } } void InstructionSelector::VisitProtectedStore(Node* node) { // TODO(eholk) UNIMPLEMENTED(); } void InstructionSelector::VisitUnalignedLoad(Node* node) { MachineRepresentation load_rep = LoadRepresentationOf(node->op()).representation(); ArmOperandGenerator g(this); Node* base = node->InputAt(0); Node* index = node->InputAt(1); InstructionCode opcode = kArmLdr; // Only floating point loads need to be specially handled; integer loads // support unaligned access. We support unaligned FP loads by loading to // integer registers first, then moving to the destination FP register. If // NEON is supported, we use the vld1.8 instruction. switch (load_rep) { case MachineRepresentation::kFloat32: { InstructionOperand temp = g.TempRegister(); EmitLoad(this, opcode, &temp, base, index); Emit(kArmVmovF32U32, g.DefineAsRegister(node), temp); return; } case MachineRepresentation::kFloat64: case MachineRepresentation::kSimd128: { // Compute the address of the least-significant byte of the FP value. // We assume that the base node is unlikely to be an encodable immediate // or the result of a shift operation, so only consider the addressing // mode that should be used for the index node. InstructionCode add_opcode = kArmAdd; InstructionOperand inputs[3]; inputs[0] = g.UseRegister(base); size_t input_count; if (TryMatchImmediateOrShift(this, &add_opcode, index, &input_count, &inputs[1])) { // input_count has been set by TryMatchImmediateOrShift(), so // increment it to account for the base register in inputs[0]. input_count++; } else { add_opcode |= AddressingModeField::encode(kMode_Operand2_R); inputs[1] = g.UseRegister(index); input_count = 2; // Base register and index. } InstructionOperand addr = g.TempRegister(); Emit(add_opcode, 1, &addr, input_count, inputs); if (CpuFeatures::IsSupported(NEON)) { // With NEON we can load directly from the calculated address. InstructionCode op = load_rep == MachineRepresentation::kFloat64 ? kArmVld1F64 : kArmVld1S128; op |= AddressingModeField::encode(kMode_Operand2_R); Emit(op, g.DefineAsRegister(node), addr); } else { DCHECK_NE(MachineRepresentation::kSimd128, load_rep); // Load both halves and move to an FP register. InstructionOperand fp_lo = g.TempRegister(); InstructionOperand fp_hi = g.TempRegister(); opcode |= AddressingModeField::encode(kMode_Offset_RI); Emit(opcode, fp_lo, addr, g.TempImmediate(0)); Emit(opcode, fp_hi, addr, g.TempImmediate(4)); Emit(kArmVmovF64U32U32, g.DefineAsRegister(node), fp_lo, fp_hi); } return; } default: // All other cases should support unaligned accesses. UNREACHABLE(); } } void InstructionSelector::VisitUnalignedStore(Node* node) { ArmOperandGenerator g(this); Node* base = node->InputAt(0); Node* index = node->InputAt(1); Node* value = node->InputAt(2); InstructionOperand inputs[4]; size_t input_count = 0; UnalignedStoreRepresentation store_rep = UnalignedStoreRepresentationOf(node->op()); // Only floating point stores need to be specially handled; integer stores // support unaligned access. We support unaligned FP stores by moving the // value to integer registers first, then storing to the destination address. // If NEON is supported, we use the vst1.8 instruction. switch (store_rep) { case MachineRepresentation::kFloat32: { inputs[input_count++] = g.TempRegister(); Emit(kArmVmovU32F32, inputs[0], g.UseRegister(value)); inputs[input_count++] = g.UseRegister(base); EmitStore(this, kArmStr, input_count, inputs, index); return; } case MachineRepresentation::kFloat64: case MachineRepresentation::kSimd128: { if (CpuFeatures::IsSupported(NEON)) { InstructionOperand address = g.TempRegister(); { // First we have to calculate the actual address. InstructionCode add_opcode = kArmAdd; InstructionOperand inputs[3]; inputs[0] = g.UseRegister(base); size_t input_count; if (TryMatchImmediateOrShift(this, &add_opcode, index, &input_count, &inputs[1])) { // input_count has been set by TryMatchImmediateOrShift(), so // increment it to account for the base register in inputs[0]. input_count++; } else { add_opcode |= AddressingModeField::encode(kMode_Operand2_R); inputs[1] = g.UseRegister(index); input_count = 2; // Base register and index. } Emit(add_opcode, 1, &address, input_count, inputs); } inputs[input_count++] = g.UseRegister(value); inputs[input_count++] = address; InstructionCode op = store_rep == MachineRepresentation::kFloat64 ? kArmVst1F64 : kArmVst1S128; op |= AddressingModeField::encode(kMode_Operand2_R); Emit(op, 0, nullptr, input_count, inputs); } else { DCHECK_NE(MachineRepresentation::kSimd128, store_rep); // Store a 64-bit floating point value using two 32-bit integer stores. // Computing the store address here would require three live temporary // registers (fp<63:32>, fp<31:0>, address), so compute base + 4 after // storing the least-significant half of the value. // First, move the 64-bit FP value into two temporary integer registers. InstructionOperand fp[] = {g.TempRegister(), g.TempRegister()}; inputs[input_count++] = g.UseRegister(value); Emit(kArmVmovU32U32F64, arraysize(fp), fp, input_count, inputs); // Store the least-significant half. inputs[0] = fp[0]; // Low 32-bits of FP value. inputs[input_count++] = g.UseRegister(base); // First store base address. EmitStore(this, kArmStr, input_count, inputs, index); // Store the most-significant half. InstructionOperand base4 = g.TempRegister(); Emit(kArmAdd | AddressingModeField::encode(kMode_Operand2_I), base4, g.UseRegister(base), g.TempImmediate(4)); // Compute base + 4. inputs[0] = fp[1]; // High 32-bits of FP value. inputs[1] = base4; // Second store base + 4 address. EmitStore(this, kArmStr, input_count, inputs, index); } return; } default: // All other cases should support unaligned accesses. UNREACHABLE(); } } namespace { void EmitBic(InstructionSelector* selector, Node* node, Node* left, Node* right) { ArmOperandGenerator g(selector); InstructionCode opcode = kArmBic; InstructionOperand value_operand; InstructionOperand shift_operand; if (TryMatchShift(selector, &opcode, right, &value_operand, &shift_operand)) { selector->Emit(opcode, g.DefineAsRegister(node), g.UseRegister(left), value_operand, shift_operand); return; } selector->Emit(opcode | AddressingModeField::encode(kMode_Operand2_R), g.DefineAsRegister(node), g.UseRegister(left), g.UseRegister(right)); } void EmitUbfx(InstructionSelector* selector, Node* node, Node* left, uint32_t lsb, uint32_t width) { DCHECK_LE(lsb, 31u); DCHECK_LE(1u, width); DCHECK_LE(width, 32u - lsb); ArmOperandGenerator g(selector); selector->Emit(kArmUbfx, g.DefineAsRegister(node), g.UseRegister(left), g.TempImmediate(lsb), g.TempImmediate(width)); } } // namespace void InstructionSelector::VisitWord32And(Node* node) { ArmOperandGenerator g(this); Int32BinopMatcher m(node); if (m.left().IsWord32Xor() && CanCover(node, m.left().node())) { Int32BinopMatcher mleft(m.left().node()); if (mleft.right().Is(-1)) { EmitBic(this, node, m.right().node(), mleft.left().node()); return; } } if (m.right().IsWord32Xor() && CanCover(node, m.right().node())) { Int32BinopMatcher mright(m.right().node()); if (mright.right().Is(-1)) { EmitBic(this, node, m.left().node(), mright.left().node()); return; } } if (m.right().HasValue()) { uint32_t const value = m.right().Value(); uint32_t width = base::bits::CountPopulation(value); uint32_t leading_zeros = base::bits::CountLeadingZeros32(value); // Try to merge SHR operations on the left hand input into this AND. if (m.left().IsWord32Shr()) { Int32BinopMatcher mshr(m.left().node()); if (mshr.right().HasValue()) { uint32_t const shift = mshr.right().Value(); if (((shift == 8) || (shift == 16) || (shift == 24)) && (value == 0xFF)) { // Merge SHR into AND by emitting a UXTB instruction with a // bytewise rotation. Emit(kArmUxtb, g.DefineAsRegister(m.node()), g.UseRegister(mshr.left().node()), g.TempImmediate(mshr.right().Value())); return; } else if (((shift == 8) || (shift == 16)) && (value == 0xFFFF)) { // Merge SHR into AND by emitting a UXTH instruction with a // bytewise rotation. Emit(kArmUxth, g.DefineAsRegister(m.node()), g.UseRegister(mshr.left().node()), g.TempImmediate(mshr.right().Value())); return; } else if (IsSupported(ARMv7) && (width != 0) && ((leading_zeros + width) == 32)) { // Merge Shr into And by emitting a UBFX instruction. DCHECK_EQ(0u, base::bits::CountTrailingZeros32(value)); if ((1 <= shift) && (shift <= 31)) { // UBFX cannot extract bits past the register size, however since // shifting the original value would have introduced some zeros we // can still use UBFX with a smaller mask and the remaining bits // will be zeros. EmitUbfx(this, node, mshr.left().node(), shift, std::min(width, 32 - shift)); return; } } } } else if (value == 0xFFFF) { // Emit UXTH for this AND. We don't bother testing for UXTB, as it's no // better than AND 0xFF for this operation. Emit(kArmUxth, g.DefineAsRegister(m.node()), g.UseRegister(m.left().node()), g.TempImmediate(0)); return; } if (g.CanBeImmediate(~value)) { // Emit BIC for this AND by inverting the immediate value first. Emit(kArmBic | AddressingModeField::encode(kMode_Operand2_I), g.DefineAsRegister(node), g.UseRegister(m.left().node()), g.TempImmediate(~value)); return; } if (!g.CanBeImmediate(value) && IsSupported(ARMv7)) { // If value has 9 to 23 contiguous set bits, and has the lsb set, we can // replace this AND with UBFX. Other contiguous bit patterns have already // been handled by BIC or will be handled by AND. if ((width != 0) && ((leading_zeros + width) == 32) && (9 <= leading_zeros) && (leading_zeros <= 23)) { DCHECK_EQ(0u, base::bits::CountTrailingZeros32(value)); EmitUbfx(this, node, m.left().node(), 0, width); return; } width = 32 - width; leading_zeros = base::bits::CountLeadingZeros32(~value); uint32_t lsb = base::bits::CountTrailingZeros32(~value); if ((leading_zeros + width + lsb) == 32) { // This AND can be replaced with BFC. Emit(kArmBfc, g.DefineSameAsFirst(node), g.UseRegister(m.left().node()), g.TempImmediate(lsb), g.TempImmediate(width)); return; } } } VisitBinop(this, node, kArmAnd, kArmAnd); } void InstructionSelector::VisitWord32Or(Node* node) { VisitBinop(this, node, kArmOrr, kArmOrr); } void InstructionSelector::VisitWord32Xor(Node* node) { ArmOperandGenerator g(this); Int32BinopMatcher m(node); if (m.right().Is(-1)) { InstructionCode opcode = kArmMvn; InstructionOperand value_operand; InstructionOperand shift_operand; if (TryMatchShift(this, &opcode, m.left().node(), &value_operand, &shift_operand)) { Emit(opcode, g.DefineAsRegister(node), value_operand, shift_operand); return; } Emit(opcode | AddressingModeField::encode(kMode_Operand2_R), g.DefineAsRegister(node), g.UseRegister(m.left().node())); return; } VisitBinop(this, node, kArmEor, kArmEor); } void InstructionSelector::VisitStackPointerGreaterThan( Node* node, FlagsContinuation* cont) { Node* const value = node->InputAt(0); InstructionCode opcode = kArchStackPointerGreaterThan; ArmOperandGenerator g(this); EmitWithContinuation(opcode, g.UseRegister(value), cont); } namespace { template <typename TryMatchShift> void VisitShift(InstructionSelector* selector, Node* node, TryMatchShift try_match_shift, FlagsContinuation* cont) { ArmOperandGenerator g(selector); InstructionCode opcode = kArmMov; InstructionOperand inputs[2]; size_t input_count = 2; InstructionOperand outputs[1]; size_t output_count = 0; CHECK(try_match_shift(selector, &opcode, node, &inputs[0], &inputs[1])); outputs[output_count++] = g.DefineAsRegister(node); DCHECK_NE(0u, input_count); DCHECK_NE(0u, output_count); DCHECK_GE(arraysize(inputs), input_count); DCHECK_GE(arraysize(outputs), output_count); DCHECK_NE(kMode_None, AddressingModeField::decode(opcode)); selector->EmitWithContinuation(opcode, output_count, outputs, input_count, inputs, cont); } template <typename TryMatchShift> void VisitShift(InstructionSelector* selector, Node* node, TryMatchShift try_match_shift) { FlagsContinuation cont; VisitShift(selector, node, try_match_shift, &cont); } } // namespace void InstructionSelector::VisitWord32Shl(Node* node) { VisitShift(this, node, TryMatchLSL); } void InstructionSelector::VisitWord32Shr(Node* node) { ArmOperandGenerator g(this); Int32BinopMatcher m(node); if (IsSupported(ARMv7) && m.left().IsWord32And() && m.right().IsInRange(0, 31)) { uint32_t lsb = m.right().Value(); Int32BinopMatcher mleft(m.left().node()); if (mleft.right().HasValue()) { uint32_t value = (mleft.right().Value() >> lsb) << lsb; uint32_t width = base::bits::CountPopulation(value); uint32_t msb = base::bits::CountLeadingZeros32(value); if ((width != 0) && (msb + width + lsb == 32)) { DCHECK_EQ(lsb, base::bits::CountTrailingZeros32(value)); return EmitUbfx(this, node, mleft.left().node(), lsb, width); } } } VisitShift(this, node, TryMatchLSR); } void InstructionSelector::VisitWord32Sar(Node* node) { ArmOperandGenerator g(this); Int32BinopMatcher m(node); if (CanCover(m.node(), m.left().node()) && m.left().IsWord32Shl()) { Int32BinopMatcher mleft(m.left().node()); if (m.right().HasValue() && mleft.right().HasValue()) { uint32_t sar = m.right().Value(); uint32_t shl = mleft.right().Value(); if ((sar == shl) && (sar == 16)) { Emit(kArmSxth, g.DefineAsRegister(node), g.UseRegister(mleft.left().node()), g.TempImmediate(0)); return; } else if ((sar == shl) && (sar == 24)) { Emit(kArmSxtb, g.DefineAsRegister(node), g.UseRegister(mleft.left().node()), g.TempImmediate(0)); return; } else if (IsSupported(ARMv7) && (sar >= shl)) { Emit(kArmSbfx, g.DefineAsRegister(node), g.UseRegister(mleft.left().node()), g.TempImmediate(sar - shl), g.TempImmediate(32 - sar)); return; } } } VisitShift(this, node, TryMatchASR); } void InstructionSelector::VisitInt32PairAdd(Node* node) { ArmOperandGenerator g(this); Node* projection1 = NodeProperties::FindProjection(node, 1); if (projection1) { // We use UseUniqueRegister here to avoid register sharing with the output // registers. InstructionOperand inputs[] = { g.UseRegister(node->InputAt(0)), g.UseUniqueRegister(node->InputAt(1)), g.UseRegister(node->InputAt(2)), g.UseUniqueRegister(node->InputAt(3))}; InstructionOperand outputs[] = { g.DefineAsRegister(node), g.DefineAsRegister(NodeProperties::FindProjection(node, 1))}; Emit(kArmAddPair, 2, outputs, 4, inputs); } else { // The high word of the result is not used, so we emit the standard 32 bit // instruction. Emit(kArmAdd | AddressingModeField::encode(kMode_Operand2_R), g.DefineSameAsFirst(node), g.UseRegister(node->InputAt(0)), g.UseRegister(node->InputAt(2))); } } void InstructionSelector::VisitInt32PairSub(Node* node) { ArmOperandGenerator g(this); Node* projection1 = NodeProperties::FindProjection(node, 1); if (projection1) { // We use UseUniqueRegister here to avoid register sharing with the output // register. InstructionOperand inputs[] = { g.UseRegister(node->InputAt(0)), g.UseUniqueRegister(node->InputAt(1)), g.UseRegister(node->InputAt(2)), g.UseUniqueRegister(node->InputAt(3))}; InstructionOperand outputs[] = { g.DefineAsRegister(node), g.DefineAsRegister(NodeProperties::FindProjection(node, 1))}; Emit(kArmSubPair, 2, outputs, 4, inputs); } else { // The high word of the result is not used, so we emit the standard 32 bit // instruction. Emit(kArmSub | AddressingModeField::encode(kMode_Operand2_R), g.DefineSameAsFirst(node), g.UseRegister(node->InputAt(0)), g.UseRegister(node->InputAt(2))); } } void InstructionSelector::VisitInt32PairMul(Node* node) { ArmOperandGenerator g(this); Node* projection1 = NodeProperties::FindProjection(node, 1); if (projection1) { InstructionOperand inputs[] = {g.UseUniqueRegister(node->InputAt(0)), g.UseUniqueRegister(node->InputAt(1)), g.UseUniqueRegister(node->InputAt(2)), g.UseUniqueRegister(node->InputAt(3))}; InstructionOperand outputs[] = { g.DefineAsRegister(node), g.DefineAsRegister(NodeProperties::FindProjection(node, 1))}; Emit(kArmMulPair, 2, outputs, 4, inputs); } else { // The high word of the result is not used, so we emit the standard 32 bit // instruction. Emit(kArmMul | AddressingModeField::encode(kMode_Operand2_R), g.DefineSameAsFirst(node), g.UseRegister(node->InputAt(0)), g.UseRegister(node->InputAt(2))); } } namespace { // Shared routine for multiple shift operations. void VisitWord32PairShift(InstructionSelector* selector, InstructionCode opcode, Node* node) { ArmOperandGenerator g(selector); // We use g.UseUniqueRegister here to guarantee that there is // no register aliasing of input registers with output registers. Int32Matcher m(node->InputAt(2)); InstructionOperand shift_operand; if (m.HasValue()) { shift_operand = g.UseImmediate(m.node()); } else { shift_operand = g.UseUniqueRegister(m.node()); } InstructionOperand inputs[] = {g.UseUniqueRegister(node->InputAt(0)), g.UseUniqueRegister(node->InputAt(1)), shift_operand}; Node* projection1 = NodeProperties::FindProjection(node, 1); InstructionOperand outputs[2]; InstructionOperand temps[1]; int32_t output_count = 0; int32_t temp_count = 0; outputs[output_count++] = g.DefineAsRegister(node); if (projection1) { outputs[output_count++] = g.DefineAsRegister(projection1); } else { temps[temp_count++] = g.TempRegister(); } selector->Emit(opcode, output_count, outputs, 3, inputs, temp_count, temps); } } // namespace void InstructionSelector::VisitWord32PairShl(Node* node) { VisitWord32PairShift(this, kArmLslPair, node); } void InstructionSelector::VisitWord32PairShr(Node* node) { VisitWord32PairShift(this, kArmLsrPair, node); } void InstructionSelector::VisitWord32PairSar(Node* node) { VisitWord32PairShift(this, kArmAsrPair, node); } void InstructionSelector::VisitWord32Ror(Node* node) { VisitShift(this, node, TryMatchROR); } void InstructionSelector::VisitWord32Ctz(Node* node) { UNREACHABLE(); } void InstructionSelector::VisitWord32ReverseBits(Node* node) { DCHECK(IsSupported(ARMv7)); VisitRR(this, kArmRbit, node); } void InstructionSelector::VisitWord64ReverseBytes(Node* node) { UNREACHABLE(); } void InstructionSelector::VisitWord32ReverseBytes(Node* node) { VisitRR(this, kArmRev, node); } void InstructionSelector::VisitWord32Popcnt(Node* node) { UNREACHABLE(); } void InstructionSelector::VisitInt32Add(Node* node) { ArmOperandGenerator g(this); Int32BinopMatcher m(node); if (CanCover(node, m.left().node())) { switch (m.left().opcode()) { case IrOpcode::kInt32Mul: { Int32BinopMatcher mleft(m.left().node()); Emit(kArmMla, g.DefineAsRegister(node), g.UseRegister(mleft.left().node()), g.UseRegister(mleft.right().node()), g.UseRegister(m.right().node())); return; } case IrOpcode::kInt32MulHigh: { Int32BinopMatcher mleft(m.left().node()); Emit(kArmSmmla, g.DefineAsRegister(node), g.UseRegister(mleft.left().node()), g.UseRegister(mleft.right().node()), g.UseRegister(m.right().node())); return; } case IrOpcode::kWord32And: { Int32BinopMatcher mleft(m.left().node()); if (mleft.right().Is(0xFF)) { Emit(kArmUxtab, g.DefineAsRegister(node), g.UseRegister(m.right().node()), g.UseRegister(mleft.left().node()), g.TempImmediate(0)); return; } else if (mleft.right().Is(0xFFFF)) { Emit(kArmUxtah, g.DefineAsRegister(node), g.UseRegister(m.right().node()), g.UseRegister(mleft.left().node()), g.TempImmediate(0)); return; } break; } case IrOpcode::kWord32Sar: { Int32BinopMatcher mleft(m.left().node()); if (CanCover(mleft.node(), mleft.left().node()) && mleft.left().IsWord32Shl()) { Int32BinopMatcher mleftleft(mleft.left().node()); if (mleft.right().Is(24) && mleftleft.right().Is(24)) { Emit(kArmSxtab, g.DefineAsRegister(node), g.UseRegister(m.right().node()), g.UseRegister(mleftleft.left().node()), g.TempImmediate(0)); return; } else if (mleft.right().Is(16) && mleftleft.right().Is(16)) { Emit(kArmSxtah, g.DefineAsRegister(node), g.UseRegister(m.right().node()), g.UseRegister(mleftleft.left().node()), g.TempImmediate(0)); return; } } break; } default: break; } } if (CanCover(node, m.right().node())) { switch (m.right().opcode()) { case IrOpcode::kInt32Mul: { Int32BinopMatcher mright(m.right().node()); Emit(kArmMla, g.DefineAsRegister(node), g.UseRegister(mright.left().node()), g.UseRegister(mright.right().node()), g.UseRegister(m.left().node())); return; } case IrOpcode::kInt32MulHigh: { Int32BinopMatcher mright(m.right().node()); Emit(kArmSmmla, g.DefineAsRegister(node), g.UseRegister(mright.left().node()), g.UseRegister(mright.right().node()), g.UseRegister(m.left().node())); return; } case IrOpcode::kWord32And: { Int32BinopMatcher mright(m.right().node()); if (mright.right().Is(0xFF)) { Emit(kArmUxtab, g.DefineAsRegister(node), g.UseRegister(m.left().node()), g.UseRegister(mright.left().node()), g.TempImmediate(0)); return; } else if (mright.right().Is(0xFFFF)) { Emit(kArmUxtah, g.DefineAsRegister(node), g.UseRegister(m.left().node()), g.UseRegister(mright.left().node()), g.TempImmediate(0)); return; } break; } case IrOpcode::kWord32Sar: { Int32BinopMatcher mright(m.right().node()); if (CanCover(mright.node(), mright.left().node()) && mright.left().IsWord32Shl()) { Int32BinopMatcher mrightleft(mright.left().node()); if (mright.right().Is(24) && mrightleft.right().Is(24)) { Emit(kArmSxtab, g.DefineAsRegister(node), g.UseRegister(m.left().node()), g.UseRegister(mrightleft.left().node()), g.TempImmediate(0)); return; } else if (mright.right().Is(16) && mrightleft.right().Is(16)) { Emit(kArmSxtah, g.DefineAsRegister(node), g.UseRegister(m.left().node()), g.UseRegister(mrightleft.left().node()), g.TempImmediate(0)); return; } } break; } default: break; } } VisitBinop(this, node, kArmAdd, kArmAdd); } void InstructionSelector::VisitInt32Sub(Node* node) { ArmOperandGenerator g(this); Int32BinopMatcher m(node); if (IsSupported(ARMv7) && m.right().IsInt32Mul() && CanCover(node, m.right().node())) { Int32BinopMatcher mright(m.right().node()); Emit(kArmMls, g.DefineAsRegister(node), g.UseRegister(mright.left().node()), g.UseRegister(mright.right().node()), g.UseRegister(m.left().node())); return; } VisitBinop(this, node, kArmSub, kArmRsb); } namespace { void EmitInt32MulWithOverflow(InstructionSelector* selector, Node* node, FlagsContinuation* cont) { ArmOperandGenerator g(selector); Int32BinopMatcher m(node); InstructionOperand result_operand = g.DefineAsRegister(node); InstructionOperand temp_operand = g.TempRegister(); InstructionOperand outputs[] = {result_operand, temp_operand}; InstructionOperand inputs[] = {g.UseRegister(m.left().node()), g.UseRegister(m.right().node())}; selector->Emit(kArmSmull, 2, outputs, 2, inputs); // result operand needs shift operator. InstructionOperand shift_31 = g.UseImmediate(31); InstructionCode opcode = kArmCmp | AddressingModeField::encode(kMode_Operand2_R_ASR_I); selector->EmitWithContinuation(opcode, temp_operand, result_operand, shift_31, cont); } } // namespace void InstructionSelector::VisitInt32Mul(Node* node) { ArmOperandGenerator g(this); Int32BinopMatcher m(node); if (m.right().HasValue() && m.right().Value() > 0) { int32_t value = m.right().Value(); if (base::bits::IsPowerOfTwo(value - 1)) { Emit(kArmAdd | AddressingModeField::encode(kMode_Operand2_R_LSL_I), g.DefineAsRegister(node), g.UseRegister(m.left().node()), g.UseRegister(m.left().node()), g.TempImmediate(WhichPowerOf2(value - 1))); return; } if (value < kMaxInt && base::bits::IsPowerOfTwo(value + 1)) { Emit(kArmRsb | AddressingModeField::encode(kMode_Operand2_R_LSL_I), g.DefineAsRegister(node), g.UseRegister(m.left().node()), g.UseRegister(m.left().node()), g.TempImmediate(WhichPowerOf2(value + 1))); return; } } VisitRRR(this, kArmMul, node); } void InstructionSelector::VisitUint32MulHigh(Node* node) { ArmOperandGenerator g(this); InstructionOperand outputs[] = {g.TempRegister(), g.DefineAsRegister(node)}; InstructionOperand inputs[] = {g.UseRegister(node->InputAt(0)), g.UseRegister(node->InputAt(1))}; Emit(kArmUmull, arraysize(outputs), outputs, arraysize(inputs), inputs); } void InstructionSelector::VisitInt32Div(Node* node) { VisitDiv(this, node, kArmSdiv, kArmVcvtF64S32, kArmVcvtS32F64); } void InstructionSelector::VisitUint32Div(Node* node) { VisitDiv(this, node, kArmUdiv, kArmVcvtF64U32, kArmVcvtU32F64); } void InstructionSelector::VisitInt32Mod(Node* node) { VisitMod(this, node, kArmSdiv, kArmVcvtF64S32, kArmVcvtS32F64); } void InstructionSelector::VisitUint32Mod(Node* node) { VisitMod(this, node, kArmUdiv, kArmVcvtF64U32, kArmVcvtU32F64); } #define RR_OP_LIST(V) \ V(Word32Clz, kArmClz) \ V(ChangeFloat32ToFloat64, kArmVcvtF64F32) \ V(RoundInt32ToFloat32, kArmVcvtF32S32) \ V(RoundUint32ToFloat32, kArmVcvtF32U32) \ V(ChangeInt32ToFloat64, kArmVcvtF64S32) \ V(ChangeUint32ToFloat64, kArmVcvtF64U32) \ V(TruncateFloat32ToInt32, kArmVcvtS32F32) \ V(TruncateFloat32ToUint32, kArmVcvtU32F32) \ V(ChangeFloat64ToInt32, kArmVcvtS32F64) \ V(ChangeFloat64ToUint32, kArmVcvtU32F64) \ V(TruncateFloat64ToUint32, kArmVcvtU32F64) \ V(TruncateFloat64ToFloat32, kArmVcvtF32F64) \ V(TruncateFloat64ToWord32, kArchTruncateDoubleToI) \ V(RoundFloat64ToInt32, kArmVcvtS32F64) \ V(BitcastFloat32ToInt32, kArmVmovU32F32) \ V(BitcastInt32ToFloat32, kArmVmovF32U32) \ V(Float64ExtractLowWord32, kArmVmovLowU32F64) \ V(Float64ExtractHighWord32, kArmVmovHighU32F64) \ V(Float64SilenceNaN, kArmFloat64SilenceNaN) \ V(Float32Abs, kArmVabsF32) \ V(Float64Abs, kArmVabsF64) \ V(Float32Neg, kArmVnegF32) \ V(Float64Neg, kArmVnegF64) \ V(Float32Sqrt, kArmVsqrtF32) \ V(Float64Sqrt, kArmVsqrtF64) #define RR_OP_LIST_V8(V) \ V(Float32RoundDown, kArmVrintmF32) \ V(Float64RoundDown, kArmVrintmF64) \ V(Float32RoundUp, kArmVrintpF32) \ V(Float64RoundUp, kArmVrintpF64) \ V(Float32RoundTruncate, kArmVrintzF32) \ V(Float64RoundTruncate, kArmVrintzF64) \ V(Float64RoundTiesAway, kArmVrintaF64) \ V(Float32RoundTiesEven, kArmVrintnF32) \ V(Float64RoundTiesEven, kArmVrintnF64) #define RRR_OP_LIST(V) \ V(Int32MulHigh, kArmSmmul) \ V(Float32Mul, kArmVmulF32) \ V(Float64Mul, kArmVmulF64) \ V(Float32Div, kArmVdivF32) \ V(Float64Div, kArmVdivF64) \ V(Float32Max, kArmFloat32Max) \ V(Float64Max, kArmFloat64Max) \ V(Float32Min, kArmFloat32Min) \ V(Float64Min, kArmFloat64Min) #define RR_VISITOR(Name, opcode) \ void InstructionSelector::Visit##Name(Node* node) { \ VisitRR(this, opcode, node); \ } RR_OP_LIST(RR_VISITOR) #undef RR_VISITOR #undef RR_OP_LIST #define RR_VISITOR_V8(Name, opcode) \ void InstructionSelector::Visit##Name(Node* node) { \ DCHECK(CpuFeatures::IsSupported(ARMv8)); \ VisitRR(this, opcode, node); \ } RR_OP_LIST_V8(RR_VISITOR_V8) #undef RR_VISITOR_V8 #undef RR_OP_LIST_V8 #define RRR_VISITOR(Name, opcode) \ void InstructionSelector::Visit##Name(Node* node) { \ VisitRRR(this, opcode, node); \ } RRR_OP_LIST(RRR_VISITOR) #undef RRR_VISITOR #undef RRR_OP_LIST void InstructionSelector::VisitFloat32Add(Node* node) { ArmOperandGenerator g(this); Float32BinopMatcher m(node); if (m.left().IsFloat32Mul() && CanCover(node, m.left().node())) { Float32BinopMatcher mleft(m.left().node()); Emit(kArmVmlaF32, g.DefineSameAsFirst(node), g.UseRegister(m.right().node()), g.UseRegister(mleft.left().node()), g.UseRegister(mleft.right().node())); return; } if (m.right().IsFloat32Mul() && CanCover(node, m.right().node())) { Float32BinopMatcher mright(m.right().node()); Emit(kArmVmlaF32, g.DefineSameAsFirst(node), g.UseRegister(m.left().node()), g.UseRegister(mright.left().node()), g.UseRegister(mright.right().node())); return; } VisitRRR(this, kArmVaddF32, node); } void InstructionSelector::VisitFloat64Add(Node* node) { ArmOperandGenerator g(this); Float64BinopMatcher m(node); if (m.left().IsFloat64Mul() && CanCover(node, m.left().node())) { Float64BinopMatcher mleft(m.left().node()); Emit(kArmVmlaF64, g.DefineSameAsFirst(node), g.UseRegister(m.right().node()), g.UseRegister(mleft.left().node()), g.UseRegister(mleft.right().node())); return; } if (m.right().IsFloat64Mul() && CanCover(node, m.right().node())) { Float64BinopMatcher mright(m.right().node()); Emit(kArmVmlaF64, g.DefineSameAsFirst(node), g.UseRegister(m.left().node()), g.UseRegister(mright.left().node()), g.UseRegister(mright.right().node())); return; } VisitRRR(this, kArmVaddF64, node); } void InstructionSelector::VisitFloat32Sub(Node* node) { ArmOperandGenerator g(this); Float32BinopMatcher m(node); if (m.right().IsFloat32Mul() && CanCover(node, m.right().node())) { Float32BinopMatcher mright(m.right().node()); Emit(kArmVmlsF32, g.DefineSameAsFirst(node), g.UseRegister(m.left().node()), g.UseRegister(mright.left().node()), g.UseRegister(mright.right().node())); return; } VisitRRR(this, kArmVsubF32, node); } void InstructionSelector::VisitFloat64Sub(Node* node) { ArmOperandGenerator g(this); Float64BinopMatcher m(node); if (m.right().IsFloat64Mul() && CanCover(node, m.right().node())) { Float64BinopMatcher mright(m.right().node()); Emit(kArmVmlsF64, g.DefineSameAsFirst(node), g.UseRegister(m.left().node()), g.UseRegister(mright.left().node()), g.UseRegister(mright.right().node())); return; } VisitRRR(this, kArmVsubF64, node); } void InstructionSelector::VisitFloat64Mod(Node* node) { ArmOperandGenerator g(this); Emit(kArmVmodF64, g.DefineAsFixed(node, d0), g.UseFixed(node->InputAt(0), d0), g.UseFixed(node->InputAt(1), d1)) ->MarkAsCall(); } void InstructionSelector::VisitFloat64Ieee754Binop(Node* node, InstructionCode opcode) { ArmOperandGenerator g(this); Emit(opcode, g.DefineAsFixed(node, d0), g.UseFixed(node->InputAt(0), d0), g.UseFixed(node->InputAt(1), d1)) ->MarkAsCall(); } void InstructionSelector::VisitFloat64Ieee754Unop(Node* node, InstructionCode opcode) { ArmOperandGenerator g(this); Emit(opcode, g.DefineAsFixed(node, d0), g.UseFixed(node->InputAt(0), d0)) ->MarkAsCall(); } void InstructionSelector::EmitPrepareArguments( ZoneVector<PushParameter>* arguments, const CallDescriptor* call_descriptor, Node* node) { ArmOperandGenerator g(this); // Prepare for C function call. if (call_descriptor->IsCFunctionCall()) { Emit(kArchPrepareCallCFunction | MiscField::encode(static_cast<int>( call_descriptor->ParameterCount())), 0, nullptr, 0, nullptr); // Poke any stack arguments. for (size_t n = 0; n < arguments->size(); ++n) { PushParameter input = (*arguments)[n]; if (input.node) { int slot = static_cast<int>(n); Emit(kArmPoke | MiscField::encode(slot), g.NoOutput(), g.UseRegister(input.node)); } } } else { // Push any stack arguments. for (PushParameter input : base::Reversed(*arguments)) { // Skip any alignment holes in pushed nodes. if (input.node == nullptr) continue; Emit(kArmPush, g.NoOutput(), g.UseRegister(input.node)); } } } void InstructionSelector::EmitPrepareResults( ZoneVector<PushParameter>* results, const CallDescriptor* call_descriptor, Node* node) { ArmOperandGenerator g(this); int reverse_slot = 0; for (PushParameter output : *results) { if (!output.location.IsCallerFrameSlot()) continue; // Skip any alignment holes in nodes. if (output.node != nullptr) { DCHECK(!call_descriptor->IsCFunctionCall()); if (output.location.GetType() == MachineType::Float32()) { MarkAsFloat32(output.node); } else if (output.location.GetType() == MachineType::Float64()) { MarkAsFloat64(output.node); } Emit(kArmPeek, g.DefineAsRegister(output.node), g.UseImmediate(reverse_slot)); } reverse_slot += output.location.GetSizeInPointers(); } } bool InstructionSelector::IsTailCallAddressImmediate() { return false; } int InstructionSelector::GetTempsCountForTailCallFromJSFunction() { return 3; } namespace { // Shared routine for multiple compare operations. void VisitCompare(InstructionSelector* selector, InstructionCode opcode, InstructionOperand left, InstructionOperand right, FlagsContinuation* cont) { selector->EmitWithContinuation(opcode, left, right, cont); } // Shared routine for multiple float32 compare operations. void VisitFloat32Compare(InstructionSelector* selector, Node* node, FlagsContinuation* cont) { ArmOperandGenerator g(selector); Float32BinopMatcher m(node); if (m.right().Is(0.0f)) { VisitCompare(selector, kArmVcmpF32, g.UseRegister(m.left().node()), g.UseImmediate(m.right().node()), cont); } else if (m.left().Is(0.0f)) { cont->Commute(); VisitCompare(selector, kArmVcmpF32, g.UseRegister(m.right().node()), g.UseImmediate(m.left().node()), cont); } else { VisitCompare(selector, kArmVcmpF32, g.UseRegister(m.left().node()), g.UseRegister(m.right().node()), cont); } } // Shared routine for multiple float64 compare operations. void VisitFloat64Compare(InstructionSelector* selector, Node* node, FlagsContinuation* cont) { ArmOperandGenerator g(selector); Float64BinopMatcher m(node); if (m.right().Is(0.0)) { VisitCompare(selector, kArmVcmpF64, g.UseRegister(m.left().node()), g.UseImmediate(m.right().node()), cont); } else if (m.left().Is(0.0)) { cont->Commute(); VisitCompare(selector, kArmVcmpF64, g.UseRegister(m.right().node()), g.UseImmediate(m.left().node()), cont); } else { VisitCompare(selector, kArmVcmpF64, g.UseRegister(m.left().node()), g.UseRegister(m.right().node()), cont); } } // Check whether we can convert: // ((a <op> b) cmp 0), b.<cond> // to: // (a <ops> b), b.<cond'> // where <ops> is the flag setting version of <op>. // We only generate conditions <cond'> that are a combination of the N // and Z flags. This avoids the need to make this function dependent on // the flag-setting operation. bool CanUseFlagSettingBinop(FlagsCondition cond) { switch (cond) { case kEqual: case kNotEqual: case kSignedLessThan: case kSignedGreaterThanOrEqual: case kUnsignedLessThanOrEqual: // x <= 0 -> x == 0 case kUnsignedGreaterThan: // x > 0 -> x != 0 return true; default: return false; } } // Map <cond> to <cond'> so that the following transformation is possible: // ((a <op> b) cmp 0), b.<cond> // to: // (a <ops> b), b.<cond'> // where <ops> is the flag setting version of <op>. FlagsCondition MapForFlagSettingBinop(FlagsCondition cond) { DCHECK(CanUseFlagSettingBinop(cond)); switch (cond) { case kEqual: case kNotEqual: return cond; case kSignedLessThan: return kNegative; case kSignedGreaterThanOrEqual: return kPositiveOrZero; case kUnsignedLessThanOrEqual: // x <= 0 -> x == 0 return kEqual; case kUnsignedGreaterThan: // x > 0 -> x != 0 return kNotEqual; default: UNREACHABLE(); } } // Check if we can perform the transformation: // ((a <op> b) cmp 0), b.<cond> // to: // (a <ops> b), b.<cond'> // where <ops> is the flag setting version of <op>, and if so, // updates {node}, {opcode} and {cont} accordingly. void MaybeReplaceCmpZeroWithFlagSettingBinop(InstructionSelector* selector, Node** node, Node* binop, InstructionCode* opcode, FlagsCondition cond, FlagsContinuation* cont) { InstructionCode binop_opcode; InstructionCode no_output_opcode; switch (binop->opcode()) { case IrOpcode::kInt32Add: binop_opcode = kArmAdd; no_output_opcode = kArmCmn; break; case IrOpcode::kWord32And: binop_opcode = kArmAnd; no_output_opcode = kArmTst; break; case IrOpcode::kWord32Or: binop_opcode = kArmOrr; no_output_opcode = kArmOrr; break; case IrOpcode::kWord32Xor: binop_opcode = kArmEor; no_output_opcode = kArmTeq; break; default: UNREACHABLE(); } if (selector->CanCover(*node, binop)) { // The comparison is the only user of {node}. cont->Overwrite(MapForFlagSettingBinop(cond)); *opcode = no_output_opcode; *node = binop; } else if (selector->IsOnlyUserOfNodeInSameBlock(*node, binop)) { // We can also handle the case where the {node} and the comparison are in // the same basic block, and the comparison is the only user of {node} in // this basic block ({node} has users in other basic blocks). cont->Overwrite(MapForFlagSettingBinop(cond)); *opcode = binop_opcode; *node = binop; } } // Shared routine for multiple word compare operations. void VisitWordCompare(InstructionSelector* selector, Node* node, InstructionCode opcode, FlagsContinuation* cont) { ArmOperandGenerator g(selector); Int32BinopMatcher m(node); InstructionOperand inputs[3]; size_t input_count = 0; InstructionOperand outputs[2]; size_t output_count = 0; bool has_result = (opcode != kArmCmp) && (opcode != kArmCmn) && (opcode != kArmTst) && (opcode != kArmTeq); if (TryMatchImmediateOrShift(selector, &opcode, m.right().node(), &input_count, &inputs[1])) { inputs[0] = g.UseRegister(m.left().node()); input_count++; } else if (TryMatchImmediateOrShift(selector, &opcode, m.left().node(), &input_count, &inputs[1])) { if (!node->op()->HasProperty(Operator::kCommutative)) cont->Commute(); inputs[0] = g.UseRegister(m.right().node()); input_count++; } else { opcode |= AddressingModeField::encode(kMode_Operand2_R); inputs[input_count++] = g.UseRegister(m.left().node()); inputs[input_count++] = g.UseRegister(m.right().node()); } if (has_result) { if (cont->IsDeoptimize()) { // If we can deoptimize as a result of the binop, we need to make sure // that the deopt inputs are not overwritten by the binop result. One way // to achieve that is to declare the output register as same-as-first. outputs[output_count++] = g.DefineSameAsFirst(node); } else { outputs[output_count++] = g.DefineAsRegister(node); } } DCHECK_NE(0u, input_count); DCHECK_GE(arraysize(inputs), input_count); DCHECK_GE(arraysize(outputs), output_count); selector->EmitWithContinuation(opcode, output_count, outputs, input_count, inputs, cont); } void VisitWordCompare(InstructionSelector* selector, Node* node, FlagsContinuation* cont) { InstructionCode opcode = kArmCmp; Int32BinopMatcher m(node); FlagsCondition cond = cont->condition(); if (m.right().Is(0) && (m.left().IsInt32Add() || m.left().IsWord32Or() || m.left().IsWord32And() || m.left().IsWord32Xor())) { // Emit flag setting instructions for comparisons against zero. if (CanUseFlagSettingBinop(cond)) { Node* binop = m.left().node(); MaybeReplaceCmpZeroWithFlagSettingBinop(selector, &node, binop, &opcode, cond, cont); } } else if (m.left().Is(0) && (m.right().IsInt32Add() || m.right().IsWord32Or() || m.right().IsWord32And() || m.right().IsWord32Xor())) { // Same as above, but we need to commute the condition before we // continue with the rest of the checks. cond = CommuteFlagsCondition(cond); if (CanUseFlagSettingBinop(cond)) { Node* binop = m.right().node(); MaybeReplaceCmpZeroWithFlagSettingBinop(selector, &node, binop, &opcode, cond, cont); } } VisitWordCompare(selector, node, opcode, cont); } } // namespace // Shared routine for word comparisons against zero. void InstructionSelector::VisitWordCompareZero(Node* user, Node* value, FlagsContinuation* cont) { // Try to combine with comparisons against 0 by simply inverting the branch. while (value->opcode() == IrOpcode::kWord32Equal && CanCover(user, value)) { Int32BinopMatcher m(value); if (!m.right().Is(0)) break; user = value; value = m.left().node(); cont->Negate(); } if (CanCover(user, value)) { switch (value->opcode()) { case IrOpcode::kWord32Equal: cont->OverwriteAndNegateIfEqual(kEqual); return VisitWordCompare(this, value, cont); case IrOpcode::kInt32LessThan: cont->OverwriteAndNegateIfEqual(kSignedLessThan); return VisitWordCompare(this, value, cont); case IrOpcode::kInt32LessThanOrEqual: cont->OverwriteAndNegateIfEqual(kSignedLessThanOrEqual); return VisitWordCompare(this, value, cont); case IrOpcode::kUint32LessThan: cont->OverwriteAndNegateIfEqual(kUnsignedLessThan); return VisitWordCompare(this, value, cont); case IrOpcode::kUint32LessThanOrEqual: cont->OverwriteAndNegateIfEqual(kUnsignedLessThanOrEqual); return VisitWordCompare(this, value, cont); case IrOpcode::kFloat32Equal: cont->OverwriteAndNegateIfEqual(kEqual); return VisitFloat32Compare(this, value, cont); case IrOpcode::kFloat32LessThan: cont->OverwriteAndNegateIfEqual(kFloatLessThan); return VisitFloat32Compare(this, value, cont); case IrOpcode::kFloat32LessThanOrEqual: cont->OverwriteAndNegateIfEqual(kFloatLessThanOrEqual); return VisitFloat32Compare(this, value, cont); case IrOpcode::kFloat64Equal: cont->OverwriteAndNegateIfEqual(kEqual); return VisitFloat64Compare(this, value, cont); case IrOpcode::kFloat64LessThan: cont->OverwriteAndNegateIfEqual(kFloatLessThan); return VisitFloat64Compare(this, value, cont); case IrOpcode::kFloat64LessThanOrEqual: cont->OverwriteAndNegateIfEqual(kFloatLessThanOrEqual); return VisitFloat64Compare(this, value, cont); case IrOpcode::kProjection: // Check if this is the overflow output projection of an // <Operation>WithOverflow node. if (ProjectionIndexOf(value->op()) == 1u) { // We cannot combine the <Operation>WithOverflow with this branch // unless the 0th projection (the use of the actual value of the // <Operation> is either nullptr, which means there's no use of the // actual value, or was already defined, which means it is scheduled // *AFTER* this branch). Node* const node = value->InputAt(0); Node* const result = NodeProperties::FindProjection(node, 0); if (!result || IsDefined(result)) { switch (node->opcode()) { case IrOpcode::kInt32AddWithOverflow: cont->OverwriteAndNegateIfEqual(kOverflow); return VisitBinop(this, node, kArmAdd, kArmAdd, cont); case IrOpcode::kInt32SubWithOverflow: cont->OverwriteAndNegateIfEqual(kOverflow); return VisitBinop(this, node, kArmSub, kArmRsb, cont); case IrOpcode::kInt32MulWithOverflow: // ARM doesn't set the overflow flag for multiplication, so we // need to test on kNotEqual. Here is the code sequence used: // smull resultlow, resulthigh, left, right // cmp resulthigh, Operand(resultlow, ASR, 31) cont->OverwriteAndNegateIfEqual(kNotEqual); return EmitInt32MulWithOverflow(this, node, cont); default: break; } } } break; case IrOpcode::kInt32Add: return VisitWordCompare(this, value, kArmCmn, cont); case IrOpcode::kInt32Sub: return VisitWordCompare(this, value, kArmCmp, cont); case IrOpcode::kWord32And: return VisitWordCompare(this, value, kArmTst, cont); case IrOpcode::kWord32Or: return VisitBinop(this, value, kArmOrr, kArmOrr, cont); case IrOpcode::kWord32Xor: return VisitWordCompare(this, value, kArmTeq, cont); case IrOpcode::kWord32Sar: return VisitShift(this, value, TryMatchASR, cont); case IrOpcode::kWord32Shl: return VisitShift(this, value, TryMatchLSL, cont); case IrOpcode::kWord32Shr: return VisitShift(this, value, TryMatchLSR, cont); case IrOpcode::kWord32Ror: return VisitShift(this, value, TryMatchROR, cont); case IrOpcode::kStackPointerGreaterThan: cont->OverwriteAndNegateIfEqual(kStackPointerGreaterThanCondition); return VisitStackPointerGreaterThan(value, cont); default: break; } } if (user->opcode() == IrOpcode::kWord32Equal) { return VisitWordCompare(this, user, cont); } // Continuation could not be combined with a compare, emit compare against 0. ArmOperandGenerator g(this); InstructionCode const opcode = kArmTst | AddressingModeField::encode(kMode_Operand2_R); InstructionOperand const value_operand = g.UseRegister(value); EmitWithContinuation(opcode, value_operand, value_operand, cont); } void InstructionSelector::VisitSwitch(Node* node, const SwitchInfo& sw) { ArmOperandGenerator g(this); InstructionOperand value_operand = g.UseRegister(node->InputAt(0)); // Emit either ArchTableSwitch or ArchLookupSwitch. if (enable_switch_jump_table_ == kEnableSwitchJumpTable) { static const size_t kMaxTableSwitchValueRange = 2 << 16; size_t table_space_cost = 4 + sw.value_range(); size_t table_time_cost = 3; size_t lookup_space_cost = 3 + 2 * sw.case_count(); size_t lookup_time_cost = sw.case_count(); if (sw.case_count() > 0 && table_space_cost + 3 * table_time_cost <= lookup_space_cost + 3 * lookup_time_cost && sw.min_value() > std::numeric_limits<int32_t>::min() && sw.value_range() <= kMaxTableSwitchValueRange) { InstructionOperand index_operand = value_operand; if (sw.min_value()) { index_operand = g.TempRegister(); Emit(kArmSub | AddressingModeField::encode(kMode_Operand2_I), index_operand, value_operand, g.TempImmediate(sw.min_value())); } // Generate a table lookup. return EmitTableSwitch(sw, index_operand); } } // Generate a tree of conditional jumps. return EmitBinarySearchSwitch(sw, value_operand); } void InstructionSelector::VisitWord32Equal(Node* const node) { FlagsContinuation cont = FlagsContinuation::ForSet(kEqual, node); Int32BinopMatcher m(node); if (m.right().Is(0)) { return VisitWordCompareZero(m.node(), m.left().node(), &cont); } VisitWordCompare(this, node, &cont); } void InstructionSelector::VisitInt32LessThan(Node* node) { FlagsContinuation cont = FlagsContinuation::ForSet(kSignedLessThan, node); VisitWordCompare(this, node, &cont); } void InstructionSelector::VisitInt32LessThanOrEqual(Node* node) { FlagsContinuation cont = FlagsContinuation::ForSet(kSignedLessThanOrEqual, node); VisitWordCompare(this, node, &cont); } void InstructionSelector::VisitUint32LessThan(Node* node) { FlagsContinuation cont = FlagsContinuation::ForSet(kUnsignedLessThan, node); VisitWordCompare(this, node, &cont); } void InstructionSelector::VisitUint32LessThanOrEqual(Node* node) { FlagsContinuation cont = FlagsContinuation::ForSet(kUnsignedLessThanOrEqual, node); VisitWordCompare(this, node, &cont); } void InstructionSelector::VisitInt32AddWithOverflow(Node* node) { if (Node* ovf = NodeProperties::FindProjection(node, 1)) { FlagsContinuation cont = FlagsContinuation::ForSet(kOverflow, ovf); return VisitBinop(this, node, kArmAdd, kArmAdd, &cont); } FlagsContinuation cont; VisitBinop(this, node, kArmAdd, kArmAdd, &cont); } void InstructionSelector::VisitInt32SubWithOverflow(Node* node) { if (Node* ovf = NodeProperties::FindProjection(node, 1)) { FlagsContinuation cont = FlagsContinuation::ForSet(kOverflow, ovf); return VisitBinop(this, node, kArmSub, kArmRsb, &cont); } FlagsContinuation cont; VisitBinop(this, node, kArmSub, kArmRsb, &cont); } void InstructionSelector::VisitInt32MulWithOverflow(Node* node) { if (Node* ovf = NodeProperties::FindProjection(node, 1)) { // ARM doesn't set the overflow flag for multiplication, so we need to test // on kNotEqual. Here is the code sequence used: // smull resultlow, resulthigh, left, right // cmp resulthigh, Operand(resultlow, ASR, 31) FlagsContinuation cont = FlagsContinuation::ForSet(kNotEqual, ovf); return EmitInt32MulWithOverflow(this, node, &cont); } FlagsContinuation cont; EmitInt32MulWithOverflow(this, node, &cont); } void InstructionSelector::VisitFloat32Equal(Node* node) { FlagsContinuation cont = FlagsContinuation::ForSet(kEqual, node); VisitFloat32Compare(this, node, &cont); } void InstructionSelector::VisitFloat32LessThan(Node* node) { FlagsContinuation cont = FlagsContinuation::ForSet(kFloatLessThan, node); VisitFloat32Compare(this, node, &cont); } void InstructionSelector::VisitFloat32LessThanOrEqual(Node* node) { FlagsContinuation cont = FlagsContinuation::ForSet(kFloatLessThanOrEqual, node); VisitFloat32Compare(this, node, &cont); } void InstructionSelector::VisitFloat64Equal(Node* node) { FlagsContinuation cont = FlagsContinuation::ForSet(kEqual, node); VisitFloat64Compare(this, node, &cont); } void InstructionSelector::VisitFloat64LessThan(Node* node) { FlagsContinuation cont = FlagsContinuation::ForSet(kFloatLessThan, node); VisitFloat64Compare(this, node, &cont); } void InstructionSelector::VisitFloat64LessThanOrEqual(Node* node) { FlagsContinuation cont = FlagsContinuation::ForSet(kFloatLessThanOrEqual, node); VisitFloat64Compare(this, node, &cont); } void InstructionSelector::VisitFloat64InsertLowWord32(Node* node) { ArmOperandGenerator g(this); Node* left = node->InputAt(0); Node* right = node->InputAt(1); if (left->opcode() == IrOpcode::kFloat64InsertHighWord32 && CanCover(node, left)) { left = left->InputAt(1); Emit(kArmVmovF64U32U32, g.DefineAsRegister(node), g.UseRegister(right), g.UseRegister(left)); return; } Emit(kArmVmovLowF64U32, g.DefineSameAsFirst(node), g.UseRegister(left), g.UseRegister(right)); } void InstructionSelector::VisitFloat64InsertHighWord32(Node* node) { ArmOperandGenerator g(this); Node* left = node->InputAt(0); Node* right = node->InputAt(1); if (left->opcode() == IrOpcode::kFloat64InsertLowWord32 && CanCover(node, left)) { left = left->InputAt(1); Emit(kArmVmovF64U32U32, g.DefineAsRegister(node), g.UseRegister(left), g.UseRegister(right)); return; } Emit(kArmVmovHighF64U32, g.DefineSameAsFirst(node), g.UseRegister(left), g.UseRegister(right)); } void InstructionSelector::VisitMemoryBarrier(Node* node) { ArmOperandGenerator g(this); Emit(kArmDmbIsh, g.NoOutput()); } void InstructionSelector::VisitWord32AtomicLoad(Node* node) { LoadRepresentation load_rep = LoadRepresentationOf(node->op()); ArmOperandGenerator g(this); Node* base = node->InputAt(0); Node* index = node->InputAt(1); ArchOpcode opcode = kArchNop; switch (load_rep.representation()) { case MachineRepresentation::kWord8: opcode = load_rep.IsSigned() ? kWord32AtomicLoadInt8 : kWord32AtomicLoadUint8; break; case MachineRepresentation::kWord16: opcode = load_rep.IsSigned() ? kWord32AtomicLoadInt16 : kWord32AtomicLoadUint16; break; case MachineRepresentation::kWord32: opcode = kWord32AtomicLoadWord32; break; default: UNREACHABLE(); } Emit(opcode | AddressingModeField::encode(kMode_Offset_RR), g.DefineAsRegister(node), g.UseRegister(base), g.UseRegister(index)); } void InstructionSelector::VisitWord32AtomicStore(Node* node) { MachineRepresentation rep = AtomicStoreRepresentationOf(node->op()); ArmOperandGenerator g(this); Node* base = node->InputAt(0); Node* index = node->InputAt(1); Node* value = node->InputAt(2); ArchOpcode opcode = kArchNop; switch (rep) { case MachineRepresentation::kWord8: opcode = kWord32AtomicStoreWord8; break; case MachineRepresentation::kWord16: opcode = kWord32AtomicStoreWord16; break; case MachineRepresentation::kWord32: opcode = kWord32AtomicStoreWord32; break; default: UNREACHABLE(); } AddressingMode addressing_mode = kMode_Offset_RR; InstructionOperand inputs[4]; size_t input_count = 0; inputs[input_count++] = g.UseUniqueRegister(base); inputs[input_count++] = g.UseUniqueRegister(index); inputs[input_count++] = g.UseUniqueRegister(value); InstructionCode code = opcode | AddressingModeField::encode(addressing_mode); Emit(code, 0, nullptr, input_count, inputs); } void InstructionSelector::VisitWord32AtomicExchange(Node* node) { ArmOperandGenerator g(this); Node* base = node->InputAt(0); Node* index = node->InputAt(1); Node* value = node->InputAt(2); ArchOpcode opcode = kArchNop; MachineType type = AtomicOpType(node->op()); if (type == MachineType::Int8()) { opcode = kWord32AtomicExchangeInt8; } else if (type == MachineType::Uint8()) { opcode = kWord32AtomicExchangeUint8; } else if (type == MachineType::Int16()) { opcode = kWord32AtomicExchangeInt16; } else if (type == MachineType::Uint16()) { opcode = kWord32AtomicExchangeUint16; } else if (type == MachineType::Int32() || type == MachineType::Uint32()) { opcode = kWord32AtomicExchangeWord32; } else { UNREACHABLE(); return; } AddressingMode addressing_mode = kMode_Offset_RR; InstructionOperand inputs[3]; size_t input_count = 0; inputs[input_count++] = g.UseRegister(base); inputs[input_count++] = g.UseRegister(index); inputs[input_count++] = g.UseUniqueRegister(value); InstructionOperand outputs[1]; outputs[0] = g.DefineAsRegister(node); InstructionOperand temps[] = {g.TempRegister(), g.TempRegister()}; InstructionCode code = opcode | AddressingModeField::encode(addressing_mode); Emit(code, 1, outputs, input_count, inputs, arraysize(temps), temps); } void InstructionSelector::VisitWord32AtomicCompareExchange(Node* node) { ArmOperandGenerator g(this); Node* base = node->InputAt(0); Node* index = node->InputAt(1); Node* old_value = node->InputAt(2); Node* new_value = node->InputAt(3); ArchOpcode opcode = kArchNop; MachineType type = AtomicOpType(node->op()); if (type == MachineType::Int8()) { opcode = kWord32AtomicCompareExchangeInt8; } else if (type == MachineType::Uint8()) { opcode = kWord32AtomicCompareExchangeUint8; } else if (type == MachineType::Int16()) { opcode = kWord32AtomicCompareExchangeInt16; } else if (type == MachineType::Uint16()) { opcode = kWord32AtomicCompareExchangeUint16; } else if (type == MachineType::Int32() || type == MachineType::Uint32()) { opcode = kWord32AtomicCompareExchangeWord32; } else { UNREACHABLE(); return; } AddressingMode addressing_mode = kMode_Offset_RR; InstructionOperand inputs[4]; size_t input_count = 0; inputs[input_count++] = g.UseRegister(base); inputs[input_count++] = g.UseRegister(index); inputs[input_count++] = g.UseUniqueRegister(old_value); inputs[input_count++] = g.UseUniqueRegister(new_value); InstructionOperand outputs[1]; outputs[0] = g.DefineAsRegister(node); InstructionOperand temps[] = {g.TempRegister(), g.TempRegister(), g.TempRegister()}; InstructionCode code = opcode | AddressingModeField::encode(addressing_mode); Emit(code, 1, outputs, input_count, inputs, arraysize(temps), temps); } void InstructionSelector::VisitWord32AtomicBinaryOperation( Node* node, ArchOpcode int8_op, ArchOpcode uint8_op, ArchOpcode int16_op, ArchOpcode uint16_op, ArchOpcode word32_op) { ArmOperandGenerator g(this); Node* base = node->InputAt(0); Node* index = node->InputAt(1); Node* value = node->InputAt(2); ArchOpcode opcode = kArchNop; MachineType type = AtomicOpType(node->op()); if (type == MachineType::Int8()) { opcode = int8_op; } else if (type == MachineType::Uint8()) { opcode = uint8_op; } else if (type == MachineType::Int16()) { opcode = int16_op; } else if (type == MachineType::Uint16()) { opcode = uint16_op; } else if (type == MachineType::Int32() || type == MachineType::Uint32()) { opcode = word32_op; } else { UNREACHABLE(); return; } AddressingMode addressing_mode = kMode_Offset_RR; InstructionOperand inputs[3]; size_t input_count = 0; inputs[input_count++] = g.UseRegister(base); inputs[input_count++] = g.UseRegister(index); inputs[input_count++] = g.UseUniqueRegister(value); InstructionOperand outputs[1]; outputs[0] = g.DefineAsRegister(node); InstructionOperand temps[] = {g.TempRegister(), g.TempRegister(), g.TempRegister()}; InstructionCode code = opcode | AddressingModeField::encode(addressing_mode); Emit(code, 1, outputs, input_count, inputs, arraysize(temps), temps); } #define VISIT_ATOMIC_BINOP(op) \ void InstructionSelector::VisitWord32Atomic##op(Node* node) { \ VisitWord32AtomicBinaryOperation( \ node, kWord32Atomic##op##Int8, kWord32Atomic##op##Uint8, \ kWord32Atomic##op##Int16, kWord32Atomic##op##Uint16, \ kWord32Atomic##op##Word32); \ } VISIT_ATOMIC_BINOP(Add) VISIT_ATOMIC_BINOP(Sub) VISIT_ATOMIC_BINOP(And) VISIT_ATOMIC_BINOP(Or) VISIT_ATOMIC_BINOP(Xor) #undef VISIT_ATOMIC_BINOP void InstructionSelector::VisitWord32AtomicPairLoad(Node* node) { ArmOperandGenerator g(this); Node* base = node->InputAt(0); Node* index = node->InputAt(1); AddressingMode addressing_mode = kMode_Offset_RR; InstructionCode code = kArmWord32AtomicPairLoad | AddressingModeField::encode(addressing_mode); InstructionOperand inputs[] = {g.UseUniqueRegister(base), g.UseUniqueRegister(index)}; Node* projection0 = NodeProperties::FindProjection(node, 0); Node* projection1 = NodeProperties::FindProjection(node, 1); if (projection1) { InstructionOperand outputs[] = {g.DefineAsFixed(projection0, r0), g.DefineAsFixed(projection1, r1)}; InstructionOperand temps[] = {g.TempRegister()}; Emit(code, arraysize(outputs), outputs, arraysize(inputs), inputs, arraysize(temps), temps); } else if (projection0) { InstructionOperand outputs[] = {g.DefineAsFixed(projection0, r0)}; InstructionOperand temps[] = {g.TempRegister(), g.TempRegister(r1)}; Emit(code, arraysize(outputs), outputs, arraysize(inputs), inputs, arraysize(temps), temps); } else { InstructionOperand temps[] = {g.TempRegister(), g.TempRegister(r0), g.TempRegister(r1)}; Emit(code, 0, nullptr, arraysize(inputs), inputs, arraysize(temps), temps); } } void InstructionSelector::VisitWord32AtomicPairStore(Node* node) { ArmOperandGenerator g(this); Node* base = node->InputAt(0); Node* index = node->InputAt(1); Node* value_low = node->InputAt(2); Node* value_high = node->InputAt(3); AddressingMode addressing_mode = kMode_Offset_RR; InstructionOperand inputs[] = { g.UseUniqueRegister(base), g.UseUniqueRegister(index), g.UseFixed(value_low, r2), g.UseFixed(value_high, r3)}; InstructionOperand temps[] = {g.TempRegister(), g.TempRegister(r0), g.TempRegister(r1)}; InstructionCode code = kArmWord32AtomicPairStore | AddressingModeField::encode(addressing_mode); Emit(code, 0, nullptr, arraysize(inputs), inputs, arraysize(temps), temps); } void InstructionSelector::VisitWord32AtomicPairAdd(Node* node) { VisitPairAtomicBinOp(this, node, kArmWord32AtomicPairAdd); } void InstructionSelector::VisitWord32AtomicPairSub(Node* node) { VisitPairAtomicBinOp(this, node, kArmWord32AtomicPairSub); } void InstructionSelector::VisitWord32AtomicPairAnd(Node* node) { VisitPairAtomicBinOp(this, node, kArmWord32AtomicPairAnd); } void InstructionSelector::VisitWord32AtomicPairOr(Node* node) { VisitPairAtomicBinOp(this, node, kArmWord32AtomicPairOr); } void InstructionSelector::VisitWord32AtomicPairXor(Node* node) { VisitPairAtomicBinOp(this, node, kArmWord32AtomicPairXor); } void InstructionSelector::VisitWord32AtomicPairExchange(Node* node) { ArmOperandGenerator g(this); Node* base = node->InputAt(0); Node* index = node->InputAt(1); Node* value = node->InputAt(2); Node* value_high = node->InputAt(3); AddressingMode addressing_mode = kMode_Offset_RR; InstructionOperand inputs[] = { g.UseFixed(value, r0), g.UseFixed(value_high, r1), g.UseUniqueRegister(base), g.UseUniqueRegister(index)}; InstructionCode code = kArmWord32AtomicPairExchange | AddressingModeField::encode(addressing_mode); Node* projection0 = NodeProperties::FindProjection(node, 0); Node* projection1 = NodeProperties::FindProjection(node, 1); if (projection1) { InstructionOperand outputs[] = {g.DefineAsFixed(projection0, r6), g.DefineAsFixed(projection1, r7)}; InstructionOperand temps[] = {g.TempRegister(), g.TempRegister()}; Emit(code, arraysize(outputs), outputs, arraysize(inputs), inputs, arraysize(temps), temps); } else if (projection0) { InstructionOperand outputs[] = {g.DefineAsFixed(projection0, r6)}; InstructionOperand temps[] = {g.TempRegister(), g.TempRegister(), g.TempRegister(r7)}; Emit(code, arraysize(outputs), outputs, arraysize(inputs), inputs, arraysize(temps), temps); } else { InstructionOperand temps[] = {g.TempRegister(), g.TempRegister(), g.TempRegister(r6), g.TempRegister(r7)}; Emit(code, 0, nullptr, arraysize(inputs), inputs, arraysize(temps), temps); } } void InstructionSelector::VisitWord32AtomicPairCompareExchange(Node* node) { ArmOperandGenerator g(this); AddressingMode addressing_mode = kMode_Offset_RR; InstructionOperand inputs[] = {g.UseFixed(node->InputAt(2), r4), g.UseFixed(node->InputAt(3), r5), g.UseFixed(node->InputAt(4), r8), g.UseFixed(node->InputAt(5), r9), g.UseUniqueRegister(node->InputAt(0)), g.UseUniqueRegister(node->InputAt(1))}; InstructionCode code = kArmWord32AtomicPairCompareExchange | AddressingModeField::encode(addressing_mode); Node* projection0 = NodeProperties::FindProjection(node, 0); Node* projection1 = NodeProperties::FindProjection(node, 1); if (projection1) { InstructionOperand outputs[] = {g.DefineAsFixed(projection0, r2), g.DefineAsFixed(projection1, r3)}; InstructionOperand temps[] = {g.TempRegister(), g.TempRegister()}; Emit(code, arraysize(outputs), outputs, arraysize(inputs), inputs, arraysize(temps), temps); } else if (projection0) { InstructionOperand outputs[] = { g.DefineAsFixed(NodeProperties::FindProjection(node, 0), r2)}; InstructionOperand temps[] = {g.TempRegister(), g.TempRegister(), g.TempRegister(r3)}; Emit(code, arraysize(outputs), outputs, arraysize(inputs), inputs, arraysize(temps), temps); } else { InstructionOperand temps[] = {g.TempRegister(), g.TempRegister(), g.TempRegister(r2), g.TempRegister(r3)}; Emit(code, 0, nullptr, arraysize(inputs), inputs, arraysize(temps), temps); } } #define SIMD_TYPE_LIST(V) \ V(F32x4) \ V(I32x4) \ V(I16x8) \ V(I8x16) #define SIMD_UNOP_LIST(V) \ V(F32x4SConvertI32x4, kArmF32x4SConvertI32x4) \ V(F32x4UConvertI32x4, kArmF32x4UConvertI32x4) \ V(F32x4Abs, kArmF32x4Abs) \ V(F32x4Neg, kArmF32x4Neg) \ V(F32x4RecipApprox, kArmF32x4RecipApprox) \ V(F32x4RecipSqrtApprox, kArmF32x4RecipSqrtApprox) \ V(I32x4SConvertF32x4, kArmI32x4SConvertF32x4) \ V(I32x4SConvertI16x8Low, kArmI32x4SConvertI16x8Low) \ V(I32x4SConvertI16x8High, kArmI32x4SConvertI16x8High) \ V(I32x4Neg, kArmI32x4Neg) \ V(I32x4UConvertF32x4, kArmI32x4UConvertF32x4) \ V(I32x4UConvertI16x8Low, kArmI32x4UConvertI16x8Low) \ V(I32x4UConvertI16x8High, kArmI32x4UConvertI16x8High) \ V(I16x8SConvertI8x16Low, kArmI16x8SConvertI8x16Low) \ V(I16x8SConvertI8x16High, kArmI16x8SConvertI8x16High) \ V(I16x8Neg, kArmI16x8Neg) \ V(I16x8UConvertI8x16Low, kArmI16x8UConvertI8x16Low) \ V(I16x8UConvertI8x16High, kArmI16x8UConvertI8x16High) \ V(I8x16Neg, kArmI8x16Neg) \ V(S128Not, kArmS128Not) \ V(S1x4AnyTrue, kArmS1x4AnyTrue) \ V(S1x4AllTrue, kArmS1x4AllTrue) \ V(S1x8AnyTrue, kArmS1x8AnyTrue) \ V(S1x8AllTrue, kArmS1x8AllTrue) \ V(S1x16AnyTrue, kArmS1x16AnyTrue) \ V(S1x16AllTrue, kArmS1x16AllTrue) #define SIMD_SHIFT_OP_LIST(V) \ V(I32x4Shl) \ V(I32x4ShrS) \ V(I32x4ShrU) \ V(I16x8Shl) \ V(I16x8ShrS) \ V(I16x8ShrU) \ V(I8x16Shl) \ V(I8x16ShrS) \ V(I8x16ShrU) #define SIMD_BINOP_LIST(V) \ V(F32x4Add, kArmF32x4Add) \ V(F32x4AddHoriz, kArmF32x4AddHoriz) \ V(F32x4Sub, kArmF32x4Sub) \ V(F32x4Mul, kArmF32x4Mul) \ V(F32x4Min, kArmF32x4Min) \ V(F32x4Max, kArmF32x4Max) \ V(F32x4Eq, kArmF32x4Eq) \ V(F32x4Ne, kArmF32x4Ne) \ V(F32x4Lt, kArmF32x4Lt) \ V(F32x4Le, kArmF32x4Le) \ V(I32x4Add, kArmI32x4Add) \ V(I32x4AddHoriz, kArmI32x4AddHoriz) \ V(I32x4Sub, kArmI32x4Sub) \ V(I32x4Mul, kArmI32x4Mul) \ V(I32x4MinS, kArmI32x4MinS) \ V(I32x4MaxS, kArmI32x4MaxS) \ V(I32x4Eq, kArmI32x4Eq) \ V(I32x4Ne, kArmI32x4Ne) \ V(I32x4GtS, kArmI32x4GtS) \ V(I32x4GeS, kArmI32x4GeS) \ V(I32x4MinU, kArmI32x4MinU) \ V(I32x4MaxU, kArmI32x4MaxU) \ V(I32x4GtU, kArmI32x4GtU) \ V(I32x4GeU, kArmI32x4GeU) \ V(I16x8SConvertI32x4, kArmI16x8SConvertI32x4) \ V(I16x8Add, kArmI16x8Add) \ V(I16x8AddSaturateS, kArmI16x8AddSaturateS) \ V(I16x8AddHoriz, kArmI16x8AddHoriz) \ V(I16x8Sub, kArmI16x8Sub) \ V(I16x8SubSaturateS, kArmI16x8SubSaturateS) \ V(I16x8Mul, kArmI16x8Mul) \ V(I16x8MinS, kArmI16x8MinS) \ V(I16x8MaxS, kArmI16x8MaxS) \ V(I16x8Eq, kArmI16x8Eq) \ V(I16x8Ne, kArmI16x8Ne) \ V(I16x8GtS, kArmI16x8GtS) \ V(I16x8GeS, kArmI16x8GeS) \ V(I16x8UConvertI32x4, kArmI16x8UConvertI32x4) \ V(I16x8AddSaturateU, kArmI16x8AddSaturateU) \ V(I16x8SubSaturateU, kArmI16x8SubSaturateU) \ V(I16x8MinU, kArmI16x8MinU) \ V(I16x8MaxU, kArmI16x8MaxU) \ V(I16x8GtU, kArmI16x8GtU) \ V(I16x8GeU, kArmI16x8GeU) \ V(I8x16SConvertI16x8, kArmI8x16SConvertI16x8) \ V(I8x16Add, kArmI8x16Add) \ V(I8x16AddSaturateS, kArmI8x16AddSaturateS) \ V(I8x16Sub, kArmI8x16Sub) \ V(I8x16SubSaturateS, kArmI8x16SubSaturateS) \ V(I8x16Mul, kArmI8x16Mul) \ V(I8x16MinS, kArmI8x16MinS) \ V(I8x16MaxS, kArmI8x16MaxS) \ V(I8x16Eq, kArmI8x16Eq) \ V(I8x16Ne, kArmI8x16Ne) \ V(I8x16GtS, kArmI8x16GtS) \ V(I8x16GeS, kArmI8x16GeS) \ V(I8x16UConvertI16x8, kArmI8x16UConvertI16x8) \ V(I8x16AddSaturateU, kArmI8x16AddSaturateU) \ V(I8x16SubSaturateU, kArmI8x16SubSaturateU) \ V(I8x16MinU, kArmI8x16MinU) \ V(I8x16MaxU, kArmI8x16MaxU) \ V(I8x16GtU, kArmI8x16GtU) \ V(I8x16GeU, kArmI8x16GeU) \ V(S128And, kArmS128And) \ V(S128Or, kArmS128Or) \ V(S128Xor, kArmS128Xor) void InstructionSelector::VisitS128Zero(Node* node) { ArmOperandGenerator g(this); Emit(kArmS128Zero, g.DefineAsRegister(node)); } #define SIMD_VISIT_SPLAT(Type) \ void InstructionSelector::Visit##Type##Splat(Node* node) { \ VisitRR(this, kArm##Type##Splat, node); \ } SIMD_TYPE_LIST(SIMD_VISIT_SPLAT) #undef SIMD_VISIT_SPLAT #define SIMD_VISIT_EXTRACT_LANE(Type) \ void InstructionSelector::Visit##Type##ExtractLane(Node* node) { \ VisitRRI(this, kArm##Type##ExtractLane, node); \ } SIMD_TYPE_LIST(SIMD_VISIT_EXTRACT_LANE) #undef SIMD_VISIT_EXTRACT_LANE #define SIMD_VISIT_REPLACE_LANE(Type) \ void InstructionSelector::Visit##Type##ReplaceLane(Node* node) { \ VisitRRIR(this, kArm##Type##ReplaceLane, node); \ } SIMD_TYPE_LIST(SIMD_VISIT_REPLACE_LANE) #undef SIMD_VISIT_REPLACE_LANE #undef SIMD_TYPE_LIST #define SIMD_VISIT_UNOP(Name, instruction) \ void InstructionSelector::Visit##Name(Node* node) { \ VisitRR(this, instruction, node); \ } SIMD_UNOP_LIST(SIMD_VISIT_UNOP) #undef SIMD_VISIT_UNOP #undef SIMD_UNOP_LIST #define SIMD_VISIT_SHIFT_OP(Name) \ void InstructionSelector::Visit##Name(Node* node) { \ VisitSimdShiftRRR(this, kArm##Name, node); \ } SIMD_SHIFT_OP_LIST(SIMD_VISIT_SHIFT_OP) #undef SIMD_VISIT_SHIFT_OP #undef SIMD_SHIFT_OP_LIST #define SIMD_VISIT_BINOP(Name, instruction) \ void InstructionSelector::Visit##Name(Node* node) { \ VisitRRR(this, instruction, node); \ } SIMD_BINOP_LIST(SIMD_VISIT_BINOP) #undef SIMD_VISIT_BINOP #undef SIMD_BINOP_LIST void InstructionSelector::VisitF32x4Div(Node* node) { ArmOperandGenerator g(this); // Use fixed registers in the lower 8 Q-registers so we can directly access // mapped registers S0-S31. Emit(kArmF32x4Div, g.DefineAsFixed(node, q0), g.UseFixed(node->InputAt(0), q0), g.UseFixed(node->InputAt(1), q1)); } void InstructionSelector::VisitS128Select(Node* node) { ArmOperandGenerator g(this); Emit(kArmS128Select, g.DefineSameAsFirst(node), g.UseRegister(node->InputAt(0)), g.UseRegister(node->InputAt(1)), g.UseRegister(node->InputAt(2))); } namespace { struct ShuffleEntry { uint8_t shuffle[kSimd128Size]; ArchOpcode opcode; }; static const ShuffleEntry arch_shuffles[] = { {{0, 1, 2, 3, 16, 17, 18, 19, 4, 5, 6, 7, 20, 21, 22, 23}, kArmS32x4ZipLeft}, {{8, 9, 10, 11, 24, 25, 26, 27, 12, 13, 14, 15, 28, 29, 30, 31}, kArmS32x4ZipRight}, {{0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27}, kArmS32x4UnzipLeft}, {{4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31}, kArmS32x4UnzipRight}, {{0, 1, 2, 3, 16, 17, 18, 19, 8, 9, 10, 11, 24, 25, 26, 27}, kArmS32x4TransposeLeft}, {{4, 5, 6, 7, 20, 21, 22, 23, 12, 13, 14, 15, 28, 29, 30, 31}, kArmS32x4TransposeRight}, {{4, 5, 6, 7, 0, 1, 2, 3, 12, 13, 14, 15, 8, 9, 10, 11}, kArmS32x2Reverse}, {{0, 1, 16, 17, 2, 3, 18, 19, 4, 5, 20, 21, 6, 7, 22, 23}, kArmS16x8ZipLeft}, {{8, 9, 24, 25, 10, 11, 26, 27, 12, 13, 28, 29, 14, 15, 30, 31}, kArmS16x8ZipRight}, {{0, 1, 4, 5, 8, 9, 12, 13, 16, 17, 20, 21, 24, 25, 28, 29}, kArmS16x8UnzipLeft}, {{2, 3, 6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 26, 27, 30, 31}, kArmS16x8UnzipRight}, {{0, 1, 16, 17, 4, 5, 20, 21, 8, 9, 24, 25, 12, 13, 28, 29}, kArmS16x8TransposeLeft}, {{2, 3, 18, 19, 6, 7, 22, 23, 10, 11, 26, 27, 14, 15, 30, 31}, kArmS16x8TransposeRight}, {{6, 7, 4, 5, 2, 3, 0, 1, 14, 15, 12, 13, 10, 11, 8, 9}, kArmS16x4Reverse}, {{2, 3, 0, 1, 6, 7, 4, 5, 10, 11, 8, 9, 14, 15, 12, 13}, kArmS16x2Reverse}, {{0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23}, kArmS8x16ZipLeft}, {{8, 24, 9, 25, 10, 26, 11, 27, 12, 28, 13, 29, 14, 30, 15, 31}, kArmS8x16ZipRight}, {{0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30}, kArmS8x16UnzipLeft}, {{1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31}, kArmS8x16UnzipRight}, {{0, 16, 2, 18, 4, 20, 6, 22, 8, 24, 10, 26, 12, 28, 14, 30}, kArmS8x16TransposeLeft}, {{1, 17, 3, 19, 5, 21, 7, 23, 9, 25, 11, 27, 13, 29, 15, 31}, kArmS8x16TransposeRight}, {{7, 6, 5, 4, 3, 2, 1, 0, 15, 14, 13, 12, 11, 10, 9, 8}, kArmS8x8Reverse}, {{3, 2, 1, 0, 7, 6, 5, 4, 11, 10, 9, 8, 15, 14, 13, 12}, kArmS8x4Reverse}, {{1, 0, 3, 2, 5, 4, 7, 6, 9, 8, 11, 10, 13, 12, 15, 14}, kArmS8x2Reverse}}; bool TryMatchArchShuffle(const uint8_t* shuffle, const ShuffleEntry* table, size_t num_entries, bool is_swizzle, ArchOpcode* opcode) { uint8_t mask = is_swizzle ? kSimd128Size - 1 : 2 * kSimd128Size - 1; for (size_t i = 0; i < num_entries; ++i) { const ShuffleEntry& entry = table[i]; int j = 0; for (; j < kSimd128Size; ++j) { if ((entry.shuffle[j] & mask) != (shuffle[j] & mask)) { break; } } if (j == kSimd128Size) { *opcode = entry.opcode; return true; } } return false; } void ArrangeShuffleTable(ArmOperandGenerator* g, Node* input0, Node* input1, InstructionOperand* src0, InstructionOperand* src1) { if (input0 == input1) { // Unary, any q-register can be the table. *src0 = *src1 = g->UseRegister(input0); } else { // Binary, table registers must be consecutive. *src0 = g->UseFixed(input0, q0); *src1 = g->UseFixed(input1, q1); } } } // namespace void InstructionSelector::VisitS8x16Shuffle(Node* node) { uint8_t shuffle[kSimd128Size]; bool is_swizzle; CanonicalizeShuffle(node, shuffle, &is_swizzle); Node* input0 = node->InputAt(0); Node* input1 = node->InputAt(1); uint8_t shuffle32x4[4]; ArmOperandGenerator g(this); int index = 0; if (TryMatch32x4Shuffle(shuffle, shuffle32x4)) { if (TryMatchDup<4>(shuffle, &index)) { DCHECK_GT(4, index); Emit(kArmS128Dup, g.DefineAsRegister(node), g.UseRegister(input0), g.UseImmediate(Neon32), g.UseImmediate(index % 4)); } else if (TryMatchIdentity(shuffle)) { EmitIdentity(node); } else { // 32x4 shuffles are implemented as s-register moves. To simplify these, // make sure the destination is distinct from both sources. InstructionOperand src0 = g.UseUniqueRegister(input0); InstructionOperand src1 = is_swizzle ? src0 : g.UseUniqueRegister(input1); Emit(kArmS32x4Shuffle, g.DefineAsRegister(node), src0, src1, g.UseImmediate(Pack4Lanes(shuffle32x4))); } return; } if (TryMatchDup<8>(shuffle, &index)) { DCHECK_GT(8, index); Emit(kArmS128Dup, g.DefineAsRegister(node), g.UseRegister(input0), g.UseImmediate(Neon16), g.UseImmediate(index % 8)); return; } if (TryMatchDup<16>(shuffle, &index)) { DCHECK_GT(16, index); Emit(kArmS128Dup, g.DefineAsRegister(node), g.UseRegister(input0), g.UseImmediate(Neon8), g.UseImmediate(index % 16)); return; } ArchOpcode opcode; if (TryMatchArchShuffle(shuffle, arch_shuffles, arraysize(arch_shuffles), is_swizzle, &opcode)) { VisitRRRShuffle(this, opcode, node); return; } uint8_t offset; if (TryMatchConcat(shuffle, &offset)) { Emit(kArmS8x16Concat, g.DefineAsRegister(node), g.UseRegister(input0), g.UseRegister(input1), g.UseImmediate(offset)); return; } // Code generator uses vtbl, arrange sources to form a valid lookup table. InstructionOperand src0, src1; ArrangeShuffleTable(&g, input0, input1, &src0, &src1); Emit(kArmS8x16Shuffle, g.DefineAsRegister(node), src0, src1, g.UseImmediate(Pack4Lanes(shuffle)), g.UseImmediate(Pack4Lanes(shuffle + 4)), g.UseImmediate(Pack4Lanes(shuffle + 8)), g.UseImmediate(Pack4Lanes(shuffle + 12))); } void InstructionSelector::VisitSignExtendWord8ToInt32(Node* node) { ArmOperandGenerator g(this); Emit(kArmSxtb, g.DefineAsRegister(node), g.UseRegister(node->InputAt(0)), g.TempImmediate(0)); } void InstructionSelector::VisitSignExtendWord16ToInt32(Node* node) { ArmOperandGenerator g(this); Emit(kArmSxth, g.DefineAsRegister(node), g.UseRegister(node->InputAt(0)), g.TempImmediate(0)); } void InstructionSelector::VisitInt32AbsWithOverflow(Node* node) { UNREACHABLE(); } void InstructionSelector::VisitInt64AbsWithOverflow(Node* node) { UNREACHABLE(); } // static MachineOperatorBuilder::Flags InstructionSelector::SupportedMachineOperatorFlags() { MachineOperatorBuilder::Flags flags = MachineOperatorBuilder::kNoFlags; if (CpuFeatures::IsSupported(SUDIV)) { // The sdiv and udiv instructions correctly return 0 if the divisor is 0, // but the fall-back implementation does not. flags |= MachineOperatorBuilder::kInt32DivIsSafe | MachineOperatorBuilder::kUint32DivIsSafe; } if (CpuFeatures::IsSupported(ARMv7)) { flags |= MachineOperatorBuilder::kWord32ReverseBits; } if (CpuFeatures::IsSupported(ARMv8)) { flags |= MachineOperatorBuilder::kFloat32RoundDown | MachineOperatorBuilder::kFloat64RoundDown | MachineOperatorBuilder::kFloat32RoundUp | MachineOperatorBuilder::kFloat64RoundUp | MachineOperatorBuilder::kFloat32RoundTruncate | MachineOperatorBuilder::kFloat64RoundTruncate | MachineOperatorBuilder::kFloat64RoundTiesAway | MachineOperatorBuilder::kFloat32RoundTiesEven | MachineOperatorBuilder::kFloat64RoundTiesEven; } return flags; } // static MachineOperatorBuilder::AlignmentRequirements InstructionSelector::AlignmentRequirements() { base::EnumSet<MachineRepresentation> req_aligned; req_aligned.Add(MachineRepresentation::kFloat32); req_aligned.Add(MachineRepresentation::kFloat64); return MachineOperatorBuilder::AlignmentRequirements:: SomeUnalignedAccessUnsupported(req_aligned, req_aligned); } } // namespace compiler } // namespace internal } // namespace v8