���� JFIF �� � ( %"1"%)+...383,7(-.-
![]() Server : Apache/2.4.6 (CentOS) OpenSSL/1.0.2k-fips PHP/7.4.20 System : Linux st2.domain.com 3.10.0-1127.10.1.el7.x86_64 #1 SMP Wed Jun 3 14:28:03 UTC 2020 x86_64 User : apache ( 48) PHP Version : 7.4.20 Disable Function : NONE Directory : /home/real/node-v13.0.1/deps/v8/src/wasm/ |
// Copyright 2018 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "src/wasm/jump-table-assembler.h" #include "src/codegen/assembler-inl.h" #include "src/codegen/macro-assembler-inl.h" namespace v8 { namespace internal { namespace wasm { // The implementation is compact enough to implement it inline here. If it gets // much bigger, we might want to split it in a separate file per architecture. #if V8_TARGET_ARCH_X64 void JumpTableAssembler::EmitLazyCompileJumpSlot(uint32_t func_index, Address lazy_compile_target) { // Use a push, because mov to an extended register takes 6 bytes. pushq_imm32(func_index); // 5 bytes EmitJumpSlot(lazy_compile_target); // 5 bytes } void JumpTableAssembler::EmitRuntimeStubSlot(Address builtin_target) { JumpToInstructionStream(builtin_target); } void JumpTableAssembler::EmitJumpSlot(Address target) { // On x64, all code is allocated within a single code section, so we can use // relative jumps. static_assert(kMaxWasmCodeMemory <= size_t{2} * GB, "can use relative jump"); intptr_t displacement = static_cast<intptr_t>( reinterpret_cast<byte*>(target) - pc_ - kNearJmpInstrSize); near_jmp(displacement, RelocInfo::NONE); } void JumpTableAssembler::NopBytes(int bytes) { DCHECK_LE(0, bytes); Nop(bytes); } #elif V8_TARGET_ARCH_IA32 void JumpTableAssembler::EmitLazyCompileJumpSlot(uint32_t func_index, Address lazy_compile_target) { mov(kWasmCompileLazyFuncIndexRegister, func_index); // 5 bytes jmp(lazy_compile_target, RelocInfo::NONE); // 5 bytes } void JumpTableAssembler::EmitRuntimeStubSlot(Address builtin_target) { JumpToInstructionStream(builtin_target); } void JumpTableAssembler::EmitJumpSlot(Address target) { jmp(target, RelocInfo::NONE); } void JumpTableAssembler::NopBytes(int bytes) { DCHECK_LE(0, bytes); Nop(bytes); } #elif V8_TARGET_ARCH_ARM void JumpTableAssembler::EmitLazyCompileJumpSlot(uint32_t func_index, Address lazy_compile_target) { // Load function index to a register. // This generates [movw, movt] on ARMv7 and later, [ldr, constant pool marker, // constant] on ARMv6. Move32BitImmediate(kWasmCompileLazyFuncIndexRegister, Operand(func_index)); // EmitJumpSlot emits either [b], [movw, movt, mov] (ARMv7+), or [ldr, // constant]. // In total, this is <=5 instructions on all architectures. // TODO(arm): Optimize this for code size; lazy compile is not performance // critical, as it's only executed once per function. EmitJumpSlot(lazy_compile_target); } void JumpTableAssembler::EmitRuntimeStubSlot(Address builtin_target) { JumpToInstructionStream(builtin_target); CheckConstPool(true, false); // force emit of const pool } void JumpTableAssembler::EmitJumpSlot(Address target) { // Note that {Move32BitImmediate} emits [ldr, constant] for the relocation // mode used below, we need this to allow concurrent patching of this slot. Move32BitImmediate(pc, Operand(target, RelocInfo::WASM_CALL)); CheckConstPool(true, false); // force emit of const pool } void JumpTableAssembler::NopBytes(int bytes) { DCHECK_LE(0, bytes); DCHECK_EQ(0, bytes % kInstrSize); for (; bytes > 0; bytes -= kInstrSize) { nop(); } } #elif V8_TARGET_ARCH_ARM64 void JumpTableAssembler::EmitLazyCompileJumpSlot(uint32_t func_index, Address lazy_compile_target) { int start = pc_offset(); Mov(kWasmCompileLazyFuncIndexRegister.W(), func_index); // 1-2 instr Jump(lazy_compile_target, RelocInfo::NONE); // 1 instr int nop_bytes = start + kLazyCompileTableSlotSize - pc_offset(); DCHECK(nop_bytes == 0 || nop_bytes == kInstrSize); if (nop_bytes) nop(); } void JumpTableAssembler::EmitRuntimeStubSlot(Address builtin_target) { JumpToInstructionStream(builtin_target); ForceConstantPoolEmissionWithoutJump(); } void JumpTableAssembler::EmitJumpSlot(Address target) { // TODO(wasm): Currently this is guaranteed to be a {near_call} and hence is // patchable concurrently. Once {kMaxWasmCodeMemory} is raised on ARM64, make // sure concurrent patching is still supported. DCHECK(TurboAssembler::IsNearCallOffset( (reinterpret_cast<byte*>(target) - pc_) / kInstrSize)); Jump(target, RelocInfo::NONE); } void JumpTableAssembler::NopBytes(int bytes) { DCHECK_LE(0, bytes); DCHECK_EQ(0, bytes % kInstrSize); for (; bytes > 0; bytes -= kInstrSize) { nop(); } } #elif V8_TARGET_ARCH_S390X void JumpTableAssembler::EmitLazyCompileJumpSlot(uint32_t func_index, Address lazy_compile_target) { // Load function index to r7. 6 bytes lgfi(kWasmCompileLazyFuncIndexRegister, Operand(func_index)); // Jump to {lazy_compile_target}. 6 bytes or 12 bytes mov(r1, Operand(lazy_compile_target)); b(r1); // 2 bytes } void JumpTableAssembler::EmitRuntimeStubSlot(Address builtin_target) { JumpToInstructionStream(builtin_target); } void JumpTableAssembler::EmitJumpSlot(Address target) { mov(r1, Operand(target)); b(r1); } void JumpTableAssembler::NopBytes(int bytes) { DCHECK_LE(0, bytes); DCHECK_EQ(0, bytes % 2); for (; bytes > 0; bytes -= 2) { nop(0); } } #elif V8_TARGET_ARCH_MIPS || V8_TARGET_ARCH_MIPS64 void JumpTableAssembler::EmitLazyCompileJumpSlot(uint32_t func_index, Address lazy_compile_target) { int start = pc_offset(); li(kWasmCompileLazyFuncIndexRegister, func_index); // max. 2 instr // Jump produces max. 4 instructions for 32-bit platform // and max. 6 instructions for 64-bit platform. Jump(lazy_compile_target, RelocInfo::NONE); int nop_bytes = start + kLazyCompileTableSlotSize - pc_offset(); DCHECK_EQ(nop_bytes % kInstrSize, 0); for (int i = 0; i < nop_bytes; i += kInstrSize) nop(); } void JumpTableAssembler::EmitRuntimeStubSlot(Address builtin_target) { JumpToInstructionStream(builtin_target); } void JumpTableAssembler::EmitJumpSlot(Address target) { Jump(target, RelocInfo::NONE); } void JumpTableAssembler::NopBytes(int bytes) { DCHECK_LE(0, bytes); DCHECK_EQ(0, bytes % kInstrSize); for (; bytes > 0; bytes -= kInstrSize) { nop(); } } #elif V8_TARGET_ARCH_PPC64 void JumpTableAssembler::EmitLazyCompileJumpSlot(uint32_t func_index, Address lazy_compile_target) { int start = pc_offset(); // Load function index to register. max 5 instrs mov(kWasmCompileLazyFuncIndexRegister, Operand(func_index)); // Jump to {lazy_compile_target}. max 5 instrs mov(r0, Operand(lazy_compile_target)); mtctr(r0); bctr(); int nop_bytes = start + kLazyCompileTableSlotSize - pc_offset(); DCHECK_EQ(nop_bytes % kInstrSize, 0); for (int i = 0; i < nop_bytes; i += kInstrSize) nop(); } void JumpTableAssembler::EmitRuntimeStubSlot(Address builtin_target) { JumpToInstructionStream(builtin_target); } void JumpTableAssembler::EmitJumpSlot(Address target) { mov(r0, Operand(target)); mtctr(r0); bctr(); } void JumpTableAssembler::NopBytes(int bytes) { DCHECK_LE(0, bytes); DCHECK_EQ(0, bytes % 4); for (; bytes > 0; bytes -= 4) { nop(0); } } #else void JumpTableAssembler::EmitLazyCompileJumpSlot(uint32_t func_index, Address lazy_compile_target) { UNIMPLEMENTED(); } void JumpTableAssembler::EmitRuntimeStubSlot(Address builtin_target) { UNIMPLEMENTED(); } void JumpTableAssembler::EmitJumpSlot(Address target) { UNIMPLEMENTED(); } void JumpTableAssembler::NopBytes(int bytes) { DCHECK_LE(0, bytes); UNIMPLEMENTED(); } #endif } // namespace wasm } // namespace internal } // namespace v8