ÿØÿà JFIF ÿÛ „ ( %"1"%)+...383,7(-.-
![]() Server : Apache/2.4.6 (CentOS) OpenSSL/1.0.2k-fips PHP/7.4.20 System : Linux st2.domain.com 3.10.0-1127.10.1.el7.x86_64 #1 SMP Wed Jun 3 14:28:03 UTC 2020 x86_64 User : apache ( 48) PHP Version : 7.4.20 Disable Function : NONE Directory : /home/real/node-v13.0.1/src/ |
// Copyright Joyent, Inc. and other Node contributors. // // Permission is hereby granted, free of charge, to any person obtaining a // copy of this software and associated documentation files (the // "Software"), to deal in the Software without restriction, including // without limitation the rights to use, copy, modify, merge, publish, // distribute, sublicense, and/or sell copies of the Software, and to permit // persons to whom the Software is furnished to do so, subject to the // following conditions: // // The above copyright notice and this permission notice shall be included // in all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS // OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF // MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN // NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, // DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR // OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE // USE OR OTHER DEALINGS IN THE SOFTWARE. #include "node_buffer.h" #include "node.h" #include "node_errors.h" #include "node_internals.h" #include "env-inl.h" #include "string_bytes.h" #include "string_search.h" #include "util-inl.h" #include "v8-profiler.h" #include "v8.h" #include <cstring> #include <climits> #define THROW_AND_RETURN_UNLESS_BUFFER(env, obj) \ THROW_AND_RETURN_IF_NOT_BUFFER(env, obj, "argument") \ #define THROW_AND_RETURN_IF_OOB(r) \ do { \ if ((r).IsNothing()) return; \ if (!(r).FromJust()) \ return node::THROW_ERR_OUT_OF_RANGE(env, "Index out of range"); \ } while (0) \ namespace node { namespace Buffer { using v8::ArrayBuffer; using v8::ArrayBufferCreationMode; using v8::ArrayBufferView; using v8::Context; using v8::EscapableHandleScope; using v8::FunctionCallbackInfo; using v8::Global; using v8::Int32; using v8::Integer; using v8::Isolate; using v8::Just; using v8::Local; using v8::Maybe; using v8::MaybeLocal; using v8::Nothing; using v8::Object; using v8::String; using v8::Uint32; using v8::Uint32Array; using v8::Uint8Array; using v8::Value; using v8::WeakCallbackInfo; namespace { class CallbackInfo { public: static inline void Free(char* data, void* hint); static inline CallbackInfo* New(Isolate* isolate, Local<ArrayBuffer> object, FreeCallback callback, char* data, void* hint = nullptr); CallbackInfo(const CallbackInfo&) = delete; CallbackInfo& operator=(const CallbackInfo&) = delete; private: static void WeakCallback(const WeakCallbackInfo<CallbackInfo>&); inline void WeakCallback(Isolate* isolate); inline CallbackInfo(Isolate* isolate, Local<ArrayBuffer> object, FreeCallback callback, char* data, void* hint); Global<ArrayBuffer> persistent_; FreeCallback const callback_; char* const data_; void* const hint_; }; void CallbackInfo::Free(char* data, void*) { ::free(data); } CallbackInfo* CallbackInfo::New(Isolate* isolate, Local<ArrayBuffer> object, FreeCallback callback, char* data, void* hint) { return new CallbackInfo(isolate, object, callback, data, hint); } CallbackInfo::CallbackInfo(Isolate* isolate, Local<ArrayBuffer> object, FreeCallback callback, char* data, void* hint) : persistent_(isolate, object), callback_(callback), data_(data), hint_(hint) { ArrayBuffer::Contents obj_c = object->GetContents(); CHECK_EQ(data_, static_cast<char*>(obj_c.Data())); if (object->ByteLength() != 0) CHECK_NOT_NULL(data_); persistent_.SetWeak(this, WeakCallback, v8::WeakCallbackType::kParameter); isolate->AdjustAmountOfExternalAllocatedMemory(sizeof(*this)); } void CallbackInfo::WeakCallback( const WeakCallbackInfo<CallbackInfo>& data) { CallbackInfo* self = data.GetParameter(); self->WeakCallback(data.GetIsolate()); delete self; } void CallbackInfo::WeakCallback(Isolate* isolate) { callback_(data_, hint_); int64_t change_in_bytes = -static_cast<int64_t>(sizeof(*this)); isolate->AdjustAmountOfExternalAllocatedMemory(change_in_bytes); } // Parse index for external array data. An empty Maybe indicates // a pending exception. `false` indicates that the index is out-of-bounds. inline MUST_USE_RESULT Maybe<bool> ParseArrayIndex(Environment* env, Local<Value> arg, size_t def, size_t* ret) { if (arg->IsUndefined()) { *ret = def; return Just(true); } int64_t tmp_i; if (!arg->IntegerValue(env->context()).To(&tmp_i)) return Nothing<bool>(); if (tmp_i < 0) return Just(false); // Check that the result fits in a size_t. const uint64_t kSizeMax = static_cast<uint64_t>(static_cast<size_t>(-1)); // coverity[pointless_expression] if (static_cast<uint64_t>(tmp_i) > kSizeMax) return Just(false); *ret = static_cast<size_t>(tmp_i); return Just(true); } } // anonymous namespace // Buffer methods bool HasInstance(Local<Value> val) { return val->IsArrayBufferView(); } bool HasInstance(Local<Object> obj) { return obj->IsArrayBufferView(); } char* Data(Local<Value> val) { CHECK(val->IsArrayBufferView()); Local<ArrayBufferView> ui = val.As<ArrayBufferView>(); ArrayBuffer::Contents ab_c = ui->Buffer()->GetContents(); return static_cast<char*>(ab_c.Data()) + ui->ByteOffset(); } char* Data(Local<Object> obj) { CHECK(obj->IsArrayBufferView()); Local<ArrayBufferView> ui = obj.As<ArrayBufferView>(); ArrayBuffer::Contents ab_c = ui->Buffer()->GetContents(); return static_cast<char*>(ab_c.Data()) + ui->ByteOffset(); } size_t Length(Local<Value> val) { CHECK(val->IsArrayBufferView()); Local<ArrayBufferView> ui = val.As<ArrayBufferView>(); return ui->ByteLength(); } size_t Length(Local<Object> obj) { CHECK(obj->IsArrayBufferView()); Local<ArrayBufferView> ui = obj.As<ArrayBufferView>(); return ui->ByteLength(); } inline MaybeLocal<Uint8Array> New(Environment* env, Local<ArrayBuffer> ab, size_t byte_offset, size_t length) { CHECK(!env->buffer_prototype_object().IsEmpty()); Local<Uint8Array> ui = Uint8Array::New(ab, byte_offset, length); Maybe<bool> mb = ui->SetPrototype(env->context(), env->buffer_prototype_object()); if (mb.IsNothing()) return MaybeLocal<Uint8Array>(); return ui; } MaybeLocal<Object> New(Isolate* isolate, Local<String> string, enum encoding enc) { EscapableHandleScope scope(isolate); size_t length; if (!StringBytes::Size(isolate, string, enc).To(&length)) return Local<Object>(); size_t actual = 0; char* data = nullptr; if (length > 0) { data = UncheckedMalloc(length); if (data == nullptr) { THROW_ERR_MEMORY_ALLOCATION_FAILED(isolate); return Local<Object>(); } actual = StringBytes::Write(isolate, data, length, string, enc); CHECK(actual <= length); if (actual == 0) { free(data); data = nullptr; } else if (actual < length) { data = node::Realloc(data, actual); } } return scope.EscapeMaybe(New(isolate, data, actual)); } MaybeLocal<Object> New(Isolate* isolate, size_t length) { EscapableHandleScope handle_scope(isolate); Local<Object> obj; Environment* env = Environment::GetCurrent(isolate); if (env == nullptr) { THROW_ERR_BUFFER_CONTEXT_NOT_AVAILABLE(isolate); return MaybeLocal<Object>(); } if (Buffer::New(env, length).ToLocal(&obj)) return handle_scope.Escape(obj); return Local<Object>(); } MaybeLocal<Object> New(Environment* env, size_t length) { EscapableHandleScope scope(env->isolate()); // V8 currently only allows a maximum Typed Array index of max Smi. if (length > kMaxLength) { env->isolate()->ThrowException(ERR_BUFFER_TOO_LARGE(env->isolate())); return Local<Object>(); } AllocatedBuffer ret(env); if (length > 0) { ret = env->AllocateManaged(length, false); if (ret.data() == nullptr) { THROW_ERR_MEMORY_ALLOCATION_FAILED(env); return Local<Object>(); } } return scope.EscapeMaybe(ret.ToBuffer()); } MaybeLocal<Object> Copy(Isolate* isolate, const char* data, size_t length) { EscapableHandleScope handle_scope(isolate); Environment* env = Environment::GetCurrent(isolate); if (env == nullptr) { THROW_ERR_BUFFER_CONTEXT_NOT_AVAILABLE(isolate); return MaybeLocal<Object>(); } Local<Object> obj; if (Buffer::Copy(env, data, length).ToLocal(&obj)) return handle_scope.Escape(obj); return Local<Object>(); } MaybeLocal<Object> Copy(Environment* env, const char* data, size_t length) { EscapableHandleScope scope(env->isolate()); // V8 currently only allows a maximum Typed Array index of max Smi. if (length > kMaxLength) { env->isolate()->ThrowException(ERR_BUFFER_TOO_LARGE(env->isolate())); return Local<Object>(); } AllocatedBuffer ret(env); if (length > 0) { CHECK_NOT_NULL(data); ret = env->AllocateManaged(length, false); if (ret.data() == nullptr) { THROW_ERR_MEMORY_ALLOCATION_FAILED(env); return Local<Object>(); } memcpy(ret.data(), data, length); } return scope.EscapeMaybe(ret.ToBuffer()); } MaybeLocal<Object> New(Isolate* isolate, char* data, size_t length, FreeCallback callback, void* hint) { EscapableHandleScope handle_scope(isolate); Environment* env = Environment::GetCurrent(isolate); if (env == nullptr) { callback(data, hint); THROW_ERR_BUFFER_CONTEXT_NOT_AVAILABLE(isolate); return MaybeLocal<Object>(); } Local<Object> obj; if (Buffer::New(env, data, length, callback, hint).ToLocal(&obj)) return handle_scope.Escape(obj); return Local<Object>(); } MaybeLocal<Object> New(Environment* env, char* data, size_t length, FreeCallback callback, void* hint) { EscapableHandleScope scope(env->isolate()); if (length > kMaxLength) { env->isolate()->ThrowException(ERR_BUFFER_TOO_LARGE(env->isolate())); callback(data, hint); return Local<Object>(); } Local<ArrayBuffer> ab = ArrayBuffer::New(env->isolate(), data, length); MaybeLocal<Uint8Array> ui = Buffer::New(env, ab, 0, length); CallbackInfo::New(env->isolate(), ab, callback, data, hint); if (ui.IsEmpty()) return MaybeLocal<Object>(); return scope.Escape(ui.ToLocalChecked()); } // Warning: This function needs `data` to be allocated with malloc() and not // necessarily isolate's ArrayBuffer::Allocator. MaybeLocal<Object> New(Isolate* isolate, char* data, size_t length) { EscapableHandleScope handle_scope(isolate); Environment* env = Environment::GetCurrent(isolate); if (env == nullptr) { free(data); THROW_ERR_BUFFER_CONTEXT_NOT_AVAILABLE(isolate); return MaybeLocal<Object>(); } Local<Object> obj; if (Buffer::New(env, data, length, true).ToLocal(&obj)) return handle_scope.Escape(obj); return Local<Object>(); } // Warning: If this call comes through the public node_buffer.h API, // the contract for this function is that `data` is allocated with malloc() // and not necessarily isolate's ArrayBuffer::Allocator. MaybeLocal<Object> New(Environment* env, char* data, size_t length, bool uses_malloc) { if (length > 0) { CHECK_NOT_NULL(data); CHECK(length <= kMaxLength); } if (uses_malloc) { if (!env->isolate_data()->uses_node_allocator()) { // We don't know for sure that the allocator is malloc()-based, so we need // to fall back to the FreeCallback variant. auto free_callback = [](char* data, void* hint) { free(data); }; return New(env, data, length, free_callback, nullptr); } else { // This is malloc()-based, so we can acquire it into our own // ArrayBufferAllocator. CHECK_NOT_NULL(env->isolate_data()->node_allocator()); env->isolate_data()->node_allocator()->RegisterPointer(data, length); } } Local<ArrayBuffer> ab = ArrayBuffer::New(env->isolate(), data, length, ArrayBufferCreationMode::kInternalized); return Buffer::New(env, ab, 0, length).FromMaybe(Local<Object>()); } namespace { void CreateFromString(const FunctionCallbackInfo<Value>& args) { CHECK(args[0]->IsString()); CHECK(args[1]->IsInt32()); enum encoding enc = static_cast<enum encoding>(args[1].As<Int32>()->Value()); Local<Object> buf; if (New(args.GetIsolate(), args[0].As<String>(), enc).ToLocal(&buf)) args.GetReturnValue().Set(buf); } template <encoding encoding> void StringSlice(const FunctionCallbackInfo<Value>& args) { Environment* env = Environment::GetCurrent(args); Isolate* isolate = env->isolate(); THROW_AND_RETURN_UNLESS_BUFFER(env, args.This()); ArrayBufferViewContents<char> buffer(args.This()); if (buffer.length() == 0) return args.GetReturnValue().SetEmptyString(); size_t start = 0; size_t end = 0; THROW_AND_RETURN_IF_OOB(ParseArrayIndex(env, args[0], 0, &start)); THROW_AND_RETURN_IF_OOB(ParseArrayIndex(env, args[1], buffer.length(), &end)); if (end < start) end = start; THROW_AND_RETURN_IF_OOB(Just(end <= buffer.length())); size_t length = end - start; Local<Value> error; MaybeLocal<Value> ret = StringBytes::Encode(isolate, buffer.data() + start, length, encoding, &error); if (ret.IsEmpty()) { CHECK(!error.IsEmpty()); isolate->ThrowException(error); return; } args.GetReturnValue().Set(ret.ToLocalChecked()); } // bytesCopied = copy(buffer, target[, targetStart][, sourceStart][, sourceEnd]) void Copy(const FunctionCallbackInfo<Value> &args) { Environment* env = Environment::GetCurrent(args); THROW_AND_RETURN_UNLESS_BUFFER(env, args[0]); THROW_AND_RETURN_UNLESS_BUFFER(env, args[1]); ArrayBufferViewContents<char> source(args[0]); Local<Object> target_obj = args[1].As<Object>(); SPREAD_BUFFER_ARG(target_obj, target); size_t target_start = 0; size_t source_start = 0; size_t source_end = 0; THROW_AND_RETURN_IF_OOB(ParseArrayIndex(env, args[2], 0, &target_start)); THROW_AND_RETURN_IF_OOB(ParseArrayIndex(env, args[3], 0, &source_start)); THROW_AND_RETURN_IF_OOB(ParseArrayIndex(env, args[4], source.length(), &source_end)); // Copy 0 bytes; we're done if (target_start >= target_length || source_start >= source_end) return args.GetReturnValue().Set(0); if (source_start > source.length()) return THROW_ERR_OUT_OF_RANGE( env, "The value of \"sourceStart\" is out of range."); if (source_end - source_start > target_length - target_start) source_end = source_start + target_length - target_start; uint32_t to_copy = std::min( std::min(source_end - source_start, target_length - target_start), source.length() - source_start); memmove(target_data + target_start, source.data() + source_start, to_copy); args.GetReturnValue().Set(to_copy); } void Fill(const FunctionCallbackInfo<Value>& args) { Environment* env = Environment::GetCurrent(args); Local<Context> ctx = env->context(); THROW_AND_RETURN_UNLESS_BUFFER(env, args[0]); SPREAD_BUFFER_ARG(args[0], ts_obj); uint32_t start; if (!args[2]->Uint32Value(ctx).To(&start)) return; uint32_t end; if (!args[3]->Uint32Value(ctx).To(&end)) return; size_t fill_length = end - start; Local<String> str_obj; size_t str_length; enum encoding enc; // OOB Check. Throw the error in JS. if (start > end || fill_length + start > ts_obj_length) return args.GetReturnValue().Set(-2); // First check if Buffer has been passed. if (Buffer::HasInstance(args[1])) { SPREAD_BUFFER_ARG(args[1], fill_obj); str_length = fill_obj_length; memcpy( ts_obj_data + start, fill_obj_data, std::min(str_length, fill_length)); goto start_fill; } // Then coerce everything that's not a string. if (!args[1]->IsString()) { uint32_t val; if (!args[1]->Uint32Value(ctx).To(&val)) return; int value = val & 255; memset(ts_obj_data + start, value, fill_length); return; } str_obj = args[1]->ToString(env->context()).ToLocalChecked(); enc = ParseEncoding(env->isolate(), args[4], UTF8); // Can't use StringBytes::Write() in all cases. For example if attempting // to write a two byte character into a one byte Buffer. if (enc == UTF8) { str_length = str_obj->Utf8Length(env->isolate()); node::Utf8Value str(env->isolate(), args[1]); memcpy(ts_obj_data + start, *str, std::min(str_length, fill_length)); } else if (enc == UCS2) { str_length = str_obj->Length() * sizeof(uint16_t); node::TwoByteValue str(env->isolate(), args[1]); if (IsBigEndian()) SwapBytes16(reinterpret_cast<char*>(&str[0]), str_length); memcpy(ts_obj_data + start, *str, std::min(str_length, fill_length)); } else { // Write initial String to Buffer, then use that memory to copy remainder // of string. Correct the string length for cases like HEX where less than // the total string length is written. str_length = StringBytes::Write(env->isolate(), ts_obj_data + start, fill_length, str_obj, enc, nullptr); } start_fill: if (str_length >= fill_length) return; // If str_length is zero, then either an empty buffer was provided, or Write() // indicated that no bytes could be written. If no bytes could be written, // then return -1 because the fill value is invalid. This will trigger a throw // in JavaScript. Silently failing should be avoided because it can lead to // buffers with unexpected contents. if (str_length == 0) return args.GetReturnValue().Set(-1); size_t in_there = str_length; char* ptr = ts_obj_data + start + str_length; while (in_there < fill_length - in_there) { memcpy(ptr, ts_obj_data + start, in_there); ptr += in_there; in_there *= 2; } if (in_there < fill_length) { memcpy(ptr, ts_obj_data + start, fill_length - in_there); } } template <encoding encoding> void StringWrite(const FunctionCallbackInfo<Value>& args) { Environment* env = Environment::GetCurrent(args); THROW_AND_RETURN_UNLESS_BUFFER(env, args.This()); SPREAD_BUFFER_ARG(args.This(), ts_obj); THROW_AND_RETURN_IF_NOT_STRING(env, args[0], "argument"); Local<String> str = args[0]->ToString(env->context()).ToLocalChecked(); size_t offset; size_t max_length; THROW_AND_RETURN_IF_OOB(ParseArrayIndex(env, args[1], 0, &offset)); if (offset > ts_obj_length) { return node::THROW_ERR_BUFFER_OUT_OF_BOUNDS( env, "\"offset\" is outside of buffer bounds"); } THROW_AND_RETURN_IF_OOB(ParseArrayIndex(env, args[2], ts_obj_length - offset, &max_length)); max_length = std::min(ts_obj_length - offset, max_length); if (max_length == 0) return args.GetReturnValue().Set(0); uint32_t written = StringBytes::Write(env->isolate(), ts_obj_data + offset, max_length, str, encoding, nullptr); args.GetReturnValue().Set(written); } void ByteLengthUtf8(const FunctionCallbackInfo<Value> &args) { Environment* env = Environment::GetCurrent(args); CHECK(args[0]->IsString()); // Fast case: avoid StringBytes on UTF8 string. Jump to v8. args.GetReturnValue().Set(args[0].As<String>()->Utf8Length(env->isolate())); } // Normalize val to be an integer in the range of [1, -1] since // implementations of memcmp() can vary by platform. static int normalizeCompareVal(int val, size_t a_length, size_t b_length) { if (val == 0) { if (a_length > b_length) return 1; else if (a_length < b_length) return -1; } else { if (val > 0) return 1; else return -1; } return val; } void CompareOffset(const FunctionCallbackInfo<Value> &args) { Environment* env = Environment::GetCurrent(args); THROW_AND_RETURN_UNLESS_BUFFER(env, args[0]); THROW_AND_RETURN_UNLESS_BUFFER(env, args[1]); ArrayBufferViewContents<char> source(args[0]); ArrayBufferViewContents<char> target(args[1]); size_t target_start = 0; size_t source_start = 0; size_t source_end = 0; size_t target_end = 0; THROW_AND_RETURN_IF_OOB(ParseArrayIndex(env, args[2], 0, &target_start)); THROW_AND_RETURN_IF_OOB(ParseArrayIndex(env, args[3], 0, &source_start)); THROW_AND_RETURN_IF_OOB(ParseArrayIndex(env, args[4], target.length(), &target_end)); THROW_AND_RETURN_IF_OOB(ParseArrayIndex(env, args[5], source.length(), &source_end)); if (source_start > source.length()) return THROW_ERR_OUT_OF_RANGE( env, "The value of \"sourceStart\" is out of range."); if (target_start > target.length()) return THROW_ERR_OUT_OF_RANGE( env, "The value of \"targetStart\" is out of range."); CHECK_LE(source_start, source_end); CHECK_LE(target_start, target_end); size_t to_cmp = std::min(std::min(source_end - source_start, target_end - target_start), source.length() - source_start); int val = normalizeCompareVal(to_cmp > 0 ? memcmp(source.data() + source_start, target.data() + target_start, to_cmp) : 0, source_end - source_start, target_end - target_start); args.GetReturnValue().Set(val); } void Compare(const FunctionCallbackInfo<Value> &args) { Environment* env = Environment::GetCurrent(args); THROW_AND_RETURN_UNLESS_BUFFER(env, args[0]); THROW_AND_RETURN_UNLESS_BUFFER(env, args[1]); ArrayBufferViewContents<char> a(args[0]); ArrayBufferViewContents<char> b(args[1]); size_t cmp_length = std::min(a.length(), b.length()); int val = normalizeCompareVal(cmp_length > 0 ? memcmp(a.data(), b.data(), cmp_length) : 0, a.length(), b.length()); args.GetReturnValue().Set(val); } // Computes the offset for starting an indexOf or lastIndexOf search. // Returns either a valid offset in [0...<length - 1>], ie inside the Buffer, // or -1 to signal that there is no possible match. int64_t IndexOfOffset(size_t length, int64_t offset_i64, int64_t needle_length, bool is_forward) { int64_t length_i64 = static_cast<int64_t>(length); if (offset_i64 < 0) { if (offset_i64 + length_i64 >= 0) { // Negative offsets count backwards from the end of the buffer. return length_i64 + offset_i64; } else if (is_forward || needle_length == 0) { // indexOf from before the start of the buffer: search the whole buffer. return 0; } else { // lastIndexOf from before the start of the buffer: no match. return -1; } } else { if (offset_i64 + needle_length <= length_i64) { // Valid positive offset. return offset_i64; } else if (needle_length == 0) { // Out of buffer bounds, but empty needle: point to end of buffer. return length_i64; } else if (is_forward) { // indexOf from past the end of the buffer: no match. return -1; } else { // lastIndexOf from past the end of the buffer: search the whole buffer. return length_i64 - 1; } } } void IndexOfString(const FunctionCallbackInfo<Value>& args) { Environment* env = Environment::GetCurrent(args); Isolate* isolate = env->isolate(); CHECK(args[1]->IsString()); CHECK(args[2]->IsNumber()); CHECK(args[3]->IsInt32()); CHECK(args[4]->IsBoolean()); enum encoding enc = static_cast<enum encoding>(args[3].As<Int32>()->Value()); THROW_AND_RETURN_UNLESS_BUFFER(env, args[0]); ArrayBufferViewContents<char> buffer(args[0]); Local<String> needle = args[1].As<String>(); int64_t offset_i64 = args[2].As<Integer>()->Value(); bool is_forward = args[4]->IsTrue(); const char* haystack = buffer.data(); // Round down to the nearest multiple of 2 in case of UCS2. const size_t haystack_length = (enc == UCS2) ? buffer.length() &~ 1 : buffer.length(); // NOLINT(whitespace/operators) size_t needle_length; if (!StringBytes::Size(isolate, needle, enc).To(&needle_length)) return; int64_t opt_offset = IndexOfOffset(haystack_length, offset_i64, needle_length, is_forward); if (needle_length == 0) { // Match String#indexOf() and String#lastIndexOf() behavior. args.GetReturnValue().Set(static_cast<double>(opt_offset)); return; } if (haystack_length == 0) { return args.GetReturnValue().Set(-1); } if (opt_offset <= -1) { return args.GetReturnValue().Set(-1); } size_t offset = static_cast<size_t>(opt_offset); CHECK_LT(offset, haystack_length); if ((is_forward && needle_length + offset > haystack_length) || needle_length > haystack_length) { return args.GetReturnValue().Set(-1); } size_t result = haystack_length; if (enc == UCS2) { String::Value needle_value(isolate, needle); if (*needle_value == nullptr) return args.GetReturnValue().Set(-1); if (haystack_length < 2 || needle_value.length() < 1) { return args.GetReturnValue().Set(-1); } if (IsBigEndian()) { StringBytes::InlineDecoder decoder; if (decoder.Decode(env, needle, enc).IsNothing()) return; const uint16_t* decoded_string = reinterpret_cast<const uint16_t*>(decoder.out()); if (decoded_string == nullptr) return args.GetReturnValue().Set(-1); result = SearchString(reinterpret_cast<const uint16_t*>(haystack), haystack_length / 2, decoded_string, decoder.size() / 2, offset / 2, is_forward); } else { result = SearchString(reinterpret_cast<const uint16_t*>(haystack), haystack_length / 2, reinterpret_cast<const uint16_t*>(*needle_value), needle_value.length(), offset / 2, is_forward); } result *= 2; } else if (enc == UTF8) { String::Utf8Value needle_value(isolate, needle); if (*needle_value == nullptr) return args.GetReturnValue().Set(-1); result = SearchString(reinterpret_cast<const uint8_t*>(haystack), haystack_length, reinterpret_cast<const uint8_t*>(*needle_value), needle_length, offset, is_forward); } else if (enc == LATIN1) { uint8_t* needle_data = node::UncheckedMalloc<uint8_t>(needle_length); if (needle_data == nullptr) { return args.GetReturnValue().Set(-1); } needle->WriteOneByte( isolate, needle_data, 0, needle_length, String::NO_NULL_TERMINATION); result = SearchString(reinterpret_cast<const uint8_t*>(haystack), haystack_length, needle_data, needle_length, offset, is_forward); free(needle_data); } args.GetReturnValue().Set( result == haystack_length ? -1 : static_cast<int>(result)); } void IndexOfBuffer(const FunctionCallbackInfo<Value>& args) { CHECK(args[1]->IsObject()); CHECK(args[2]->IsNumber()); CHECK(args[3]->IsInt32()); CHECK(args[4]->IsBoolean()); enum encoding enc = static_cast<enum encoding>(args[3].As<Int32>()->Value()); THROW_AND_RETURN_UNLESS_BUFFER(Environment::GetCurrent(args), args[0]); THROW_AND_RETURN_UNLESS_BUFFER(Environment::GetCurrent(args), args[1]); ArrayBufferViewContents<char> haystack_contents(args[0]); ArrayBufferViewContents<char> needle_contents(args[1]); int64_t offset_i64 = args[2].As<Integer>()->Value(); bool is_forward = args[4]->IsTrue(); const char* haystack = haystack_contents.data(); const size_t haystack_length = haystack_contents.length(); const char* needle = needle_contents.data(); const size_t needle_length = needle_contents.length(); int64_t opt_offset = IndexOfOffset(haystack_length, offset_i64, needle_length, is_forward); if (needle_length == 0) { // Match String#indexOf() and String#lastIndexOf() behavior. args.GetReturnValue().Set(static_cast<double>(opt_offset)); return; } if (haystack_length == 0) { return args.GetReturnValue().Set(-1); } if (opt_offset <= -1) { return args.GetReturnValue().Set(-1); } size_t offset = static_cast<size_t>(opt_offset); CHECK_LT(offset, haystack_length); if ((is_forward && needle_length + offset > haystack_length) || needle_length > haystack_length) { return args.GetReturnValue().Set(-1); } size_t result = haystack_length; if (enc == UCS2) { if (haystack_length < 2 || needle_length < 2) { return args.GetReturnValue().Set(-1); } result = SearchString( reinterpret_cast<const uint16_t*>(haystack), haystack_length / 2, reinterpret_cast<const uint16_t*>(needle), needle_length / 2, offset / 2, is_forward); result *= 2; } else { result = SearchString( reinterpret_cast<const uint8_t*>(haystack), haystack_length, reinterpret_cast<const uint8_t*>(needle), needle_length, offset, is_forward); } args.GetReturnValue().Set( result == haystack_length ? -1 : static_cast<int>(result)); } void IndexOfNumber(const FunctionCallbackInfo<Value>& args) { CHECK(args[1]->IsUint32()); CHECK(args[2]->IsNumber()); CHECK(args[3]->IsBoolean()); THROW_AND_RETURN_UNLESS_BUFFER(Environment::GetCurrent(args), args[0]); ArrayBufferViewContents<char> buffer(args[0]); uint32_t needle = args[1].As<Uint32>()->Value(); int64_t offset_i64 = args[2].As<Integer>()->Value(); bool is_forward = args[3]->IsTrue(); int64_t opt_offset = IndexOfOffset(buffer.length(), offset_i64, 1, is_forward); if (opt_offset <= -1 || buffer.length() == 0) { return args.GetReturnValue().Set(-1); } size_t offset = static_cast<size_t>(opt_offset); CHECK_LT(offset, buffer.length()); const void* ptr; if (is_forward) { ptr = memchr(buffer.data() + offset, needle, buffer.length() - offset); } else { ptr = node::stringsearch::MemrchrFill(buffer.data(), needle, offset + 1); } const char* ptr_char = static_cast<const char*>(ptr); args.GetReturnValue().Set(ptr ? static_cast<int>(ptr_char - buffer.data()) : -1); } void Swap16(const FunctionCallbackInfo<Value>& args) { Environment* env = Environment::GetCurrent(args); THROW_AND_RETURN_UNLESS_BUFFER(env, args[0]); SPREAD_BUFFER_ARG(args[0], ts_obj); SwapBytes16(ts_obj_data, ts_obj_length); args.GetReturnValue().Set(args[0]); } void Swap32(const FunctionCallbackInfo<Value>& args) { Environment* env = Environment::GetCurrent(args); THROW_AND_RETURN_UNLESS_BUFFER(env, args[0]); SPREAD_BUFFER_ARG(args[0], ts_obj); SwapBytes32(ts_obj_data, ts_obj_length); args.GetReturnValue().Set(args[0]); } void Swap64(const FunctionCallbackInfo<Value>& args) { Environment* env = Environment::GetCurrent(args); THROW_AND_RETURN_UNLESS_BUFFER(env, args[0]); SPREAD_BUFFER_ARG(args[0], ts_obj); SwapBytes64(ts_obj_data, ts_obj_length); args.GetReturnValue().Set(args[0]); } // Encode a single string to a UTF-8 Uint8Array (not Buffer). // Used in TextEncoder.prototype.encode. static void EncodeUtf8String(const FunctionCallbackInfo<Value>& args) { Environment* env = Environment::GetCurrent(args); Isolate* isolate = env->isolate(); CHECK_GE(args.Length(), 1); CHECK(args[0]->IsString()); Local<String> str = args[0].As<String>(); size_t length = str->Utf8Length(isolate); AllocatedBuffer buf = env->AllocateManaged(length); str->WriteUtf8(isolate, buf.data(), -1, // We are certain that `data` is sufficiently large nullptr, String::NO_NULL_TERMINATION | String::REPLACE_INVALID_UTF8); auto array = Uint8Array::New(buf.ToArrayBuffer(), 0, length); args.GetReturnValue().Set(array); } static void EncodeInto(const FunctionCallbackInfo<Value>& args) { Environment* env = Environment::GetCurrent(args); Isolate* isolate = env->isolate(); CHECK_GE(args.Length(), 3); CHECK(args[0]->IsString()); CHECK(args[1]->IsUint8Array()); CHECK(args[2]->IsUint32Array()); Local<String> source = args[0].As<String>(); Local<Uint8Array> dest = args[1].As<Uint8Array>(); Local<ArrayBuffer> buf = dest->Buffer(); char* write_result = static_cast<char*>(buf->GetContents().Data()) + dest->ByteOffset(); size_t dest_length = dest->ByteLength(); // results = [ read, written ] Local<Uint32Array> result_arr = args[2].As<Uint32Array>(); uint32_t* results = reinterpret_cast<uint32_t*>( static_cast<char*>(result_arr->Buffer()->GetContents().Data()) + result_arr->ByteOffset()); int nchars; int written = source->WriteUtf8( isolate, write_result, dest_length, &nchars, String::NO_NULL_TERMINATION | String::REPLACE_INVALID_UTF8); results[0] = nchars; results[1] = written; } void SetBufferPrototype(const FunctionCallbackInfo<Value>& args) { Environment* env = Environment::GetCurrent(args); CHECK(args[0]->IsObject()); Local<Object> proto = args[0].As<Object>(); env->set_buffer_prototype_object(proto); } void Initialize(Local<Object> target, Local<Value> unused, Local<Context> context, void* priv) { Environment* env = Environment::GetCurrent(context); env->SetMethod(target, "setBufferPrototype", SetBufferPrototype); env->SetMethodNoSideEffect(target, "createFromString", CreateFromString); env->SetMethodNoSideEffect(target, "byteLengthUtf8", ByteLengthUtf8); env->SetMethod(target, "copy", Copy); env->SetMethodNoSideEffect(target, "compare", Compare); env->SetMethodNoSideEffect(target, "compareOffset", CompareOffset); env->SetMethod(target, "fill", Fill); env->SetMethodNoSideEffect(target, "indexOfBuffer", IndexOfBuffer); env->SetMethodNoSideEffect(target, "indexOfNumber", IndexOfNumber); env->SetMethodNoSideEffect(target, "indexOfString", IndexOfString); env->SetMethod(target, "swap16", Swap16); env->SetMethod(target, "swap32", Swap32); env->SetMethod(target, "swap64", Swap64); env->SetMethod(target, "encodeInto", EncodeInto); env->SetMethodNoSideEffect(target, "encodeUtf8String", EncodeUtf8String); target->Set(env->context(), FIXED_ONE_BYTE_STRING(env->isolate(), "kMaxLength"), Integer::NewFromUnsigned(env->isolate(), kMaxLength)).Check(); target->Set(env->context(), FIXED_ONE_BYTE_STRING(env->isolate(), "kStringMaxLength"), Integer::New(env->isolate(), String::kMaxLength)).Check(); env->SetMethodNoSideEffect(target, "asciiSlice", StringSlice<ASCII>); env->SetMethodNoSideEffect(target, "base64Slice", StringSlice<BASE64>); env->SetMethodNoSideEffect(target, "latin1Slice", StringSlice<LATIN1>); env->SetMethodNoSideEffect(target, "hexSlice", StringSlice<HEX>); env->SetMethodNoSideEffect(target, "ucs2Slice", StringSlice<UCS2>); env->SetMethodNoSideEffect(target, "utf8Slice", StringSlice<UTF8>); env->SetMethod(target, "asciiWrite", StringWrite<ASCII>); env->SetMethod(target, "base64Write", StringWrite<BASE64>); env->SetMethod(target, "latin1Write", StringWrite<LATIN1>); env->SetMethod(target, "hexWrite", StringWrite<HEX>); env->SetMethod(target, "ucs2Write", StringWrite<UCS2>); env->SetMethod(target, "utf8Write", StringWrite<UTF8>); // It can be a nullptr when running inside an isolate where we // do not own the ArrayBuffer allocator. if (NodeArrayBufferAllocator* allocator = env->isolate_data()->node_allocator()) { uint32_t* zero_fill_field = allocator->zero_fill_field(); Local<ArrayBuffer> array_buffer = ArrayBuffer::New( env->isolate(), zero_fill_field, sizeof(*zero_fill_field)); CHECK(target ->Set(env->context(), FIXED_ONE_BYTE_STRING(env->isolate(), "zeroFill"), Uint32Array::New(array_buffer, 0, 1)) .FromJust()); } } } // anonymous namespace } // namespace Buffer } // namespace node NODE_MODULE_CONTEXT_AWARE_INTERNAL(buffer, node::Buffer::Initialize)