���� JFIF �� � ( %"1"%)+...383,7(-.-
![]() Server : Apache/2.4.6 (CentOS) OpenSSL/1.0.2k-fips PHP/7.4.20 System : Linux st2.domain.com 3.10.0-1127.10.1.el7.x86_64 #1 SMP Wed Jun 3 14:28:03 UTC 2020 x86_64 User : apache ( 48) PHP Version : 7.4.20 Disable Function : NONE Directory : /var/www/html/netphim/layout/default/node_modules/hls.js/src/crypt/ |
import { sliceUint8 } from '../utils/typed-array'; // PKCS7 export function removePadding(array: Uint8Array): Uint8Array { const outputBytes = array.byteLength; const paddingBytes = outputBytes && new DataView(array.buffer).getUint8(outputBytes - 1); if (paddingBytes) { return sliceUint8(array, 0, outputBytes - paddingBytes); } return array; } export default class AESDecryptor { private rcon: Array<number> = [ 0x0, 0x1, 0x2, 0x4, 0x8, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, ]; private subMix: Array<Uint32Array> = [ new Uint32Array(256), new Uint32Array(256), new Uint32Array(256), new Uint32Array(256), ]; private invSubMix: Array<Uint32Array> = [ new Uint32Array(256), new Uint32Array(256), new Uint32Array(256), new Uint32Array(256), ]; private sBox: Uint32Array = new Uint32Array(256); private invSBox: Uint32Array = new Uint32Array(256); private key: Uint32Array = new Uint32Array(0); private ksRows: number = 0; private keySize: number = 0; private keySchedule!: Uint32Array; private invKeySchedule!: Uint32Array; constructor() { this.initTable(); } // Using view.getUint32() also swaps the byte order. uint8ArrayToUint32Array_(arrayBuffer) { const view = new DataView(arrayBuffer); const newArray = new Uint32Array(4); for (let i = 0; i < 4; i++) { newArray[i] = view.getUint32(i * 4); } return newArray; } initTable() { const sBox = this.sBox; const invSBox = this.invSBox; const subMix = this.subMix; const subMix0 = subMix[0]; const subMix1 = subMix[1]; const subMix2 = subMix[2]; const subMix3 = subMix[3]; const invSubMix = this.invSubMix; const invSubMix0 = invSubMix[0]; const invSubMix1 = invSubMix[1]; const invSubMix2 = invSubMix[2]; const invSubMix3 = invSubMix[3]; const d = new Uint32Array(256); let x = 0; let xi = 0; let i = 0; for (i = 0; i < 256; i++) { if (i < 128) { d[i] = i << 1; } else { d[i] = (i << 1) ^ 0x11b; } } for (i = 0; i < 256; i++) { let sx = xi ^ (xi << 1) ^ (xi << 2) ^ (xi << 3) ^ (xi << 4); sx = (sx >>> 8) ^ (sx & 0xff) ^ 0x63; sBox[x] = sx; invSBox[sx] = x; // Compute multiplication const x2 = d[x]; const x4 = d[x2]; const x8 = d[x4]; // Compute sub/invSub bytes, mix columns tables let t = (d[sx] * 0x101) ^ (sx * 0x1010100); subMix0[x] = (t << 24) | (t >>> 8); subMix1[x] = (t << 16) | (t >>> 16); subMix2[x] = (t << 8) | (t >>> 24); subMix3[x] = t; // Compute inv sub bytes, inv mix columns tables t = (x8 * 0x1010101) ^ (x4 * 0x10001) ^ (x2 * 0x101) ^ (x * 0x1010100); invSubMix0[sx] = (t << 24) | (t >>> 8); invSubMix1[sx] = (t << 16) | (t >>> 16); invSubMix2[sx] = (t << 8) | (t >>> 24); invSubMix3[sx] = t; // Compute next counter if (!x) { x = xi = 1; } else { x = x2 ^ d[d[d[x8 ^ x2]]]; xi ^= d[d[xi]]; } } } expandKey(keyBuffer: ArrayBuffer) { // convert keyBuffer to Uint32Array const key = this.uint8ArrayToUint32Array_(keyBuffer); let sameKey = true; let offset = 0; while (offset < key.length && sameKey) { sameKey = key[offset] === this.key[offset]; offset++; } if (sameKey) { return; } this.key = key; const keySize = (this.keySize = key.length); if (keySize !== 4 && keySize !== 6 && keySize !== 8) { throw new Error('Invalid aes key size=' + keySize); } const ksRows = (this.ksRows = (keySize + 6 + 1) * 4); let ksRow; let invKsRow; const keySchedule = (this.keySchedule = new Uint32Array(ksRows)); const invKeySchedule = (this.invKeySchedule = new Uint32Array(ksRows)); const sbox = this.sBox; const rcon = this.rcon; const invSubMix = this.invSubMix; const invSubMix0 = invSubMix[0]; const invSubMix1 = invSubMix[1]; const invSubMix2 = invSubMix[2]; const invSubMix3 = invSubMix[3]; let prev; let t; for (ksRow = 0; ksRow < ksRows; ksRow++) { if (ksRow < keySize) { prev = keySchedule[ksRow] = key[ksRow]; continue; } t = prev; if (ksRow % keySize === 0) { // Rot word t = (t << 8) | (t >>> 24); // Sub word t = (sbox[t >>> 24] << 24) | (sbox[(t >>> 16) & 0xff] << 16) | (sbox[(t >>> 8) & 0xff] << 8) | sbox[t & 0xff]; // Mix Rcon t ^= rcon[(ksRow / keySize) | 0] << 24; } else if (keySize > 6 && ksRow % keySize === 4) { // Sub word t = (sbox[t >>> 24] << 24) | (sbox[(t >>> 16) & 0xff] << 16) | (sbox[(t >>> 8) & 0xff] << 8) | sbox[t & 0xff]; } keySchedule[ksRow] = prev = (keySchedule[ksRow - keySize] ^ t) >>> 0; } for (invKsRow = 0; invKsRow < ksRows; invKsRow++) { ksRow = ksRows - invKsRow; if (invKsRow & 3) { t = keySchedule[ksRow]; } else { t = keySchedule[ksRow - 4]; } if (invKsRow < 4 || ksRow <= 4) { invKeySchedule[invKsRow] = t; } else { invKeySchedule[invKsRow] = invSubMix0[sbox[t >>> 24]] ^ invSubMix1[sbox[(t >>> 16) & 0xff]] ^ invSubMix2[sbox[(t >>> 8) & 0xff]] ^ invSubMix3[sbox[t & 0xff]]; } invKeySchedule[invKsRow] = invKeySchedule[invKsRow] >>> 0; } } // Adding this as a method greatly improves performance. networkToHostOrderSwap(word) { return ( (word << 24) | ((word & 0xff00) << 8) | ((word & 0xff0000) >> 8) | (word >>> 24) ); } decrypt(inputArrayBuffer: ArrayBuffer, offset: number, aesIV: ArrayBuffer) { const nRounds = this.keySize + 6; const invKeySchedule = this.invKeySchedule; const invSBOX = this.invSBox; const invSubMix = this.invSubMix; const invSubMix0 = invSubMix[0]; const invSubMix1 = invSubMix[1]; const invSubMix2 = invSubMix[2]; const invSubMix3 = invSubMix[3]; const initVector = this.uint8ArrayToUint32Array_(aesIV); let initVector0 = initVector[0]; let initVector1 = initVector[1]; let initVector2 = initVector[2]; let initVector3 = initVector[3]; const inputInt32 = new Int32Array(inputArrayBuffer); const outputInt32 = new Int32Array(inputInt32.length); let t0, t1, t2, t3; let s0, s1, s2, s3; let inputWords0, inputWords1, inputWords2, inputWords3; let ksRow, i; const swapWord = this.networkToHostOrderSwap; while (offset < inputInt32.length) { inputWords0 = swapWord(inputInt32[offset]); inputWords1 = swapWord(inputInt32[offset + 1]); inputWords2 = swapWord(inputInt32[offset + 2]); inputWords3 = swapWord(inputInt32[offset + 3]); s0 = inputWords0 ^ invKeySchedule[0]; s1 = inputWords3 ^ invKeySchedule[1]; s2 = inputWords2 ^ invKeySchedule[2]; s3 = inputWords1 ^ invKeySchedule[3]; ksRow = 4; // Iterate through the rounds of decryption for (i = 1; i < nRounds; i++) { t0 = invSubMix0[s0 >>> 24] ^ invSubMix1[(s1 >> 16) & 0xff] ^ invSubMix2[(s2 >> 8) & 0xff] ^ invSubMix3[s3 & 0xff] ^ invKeySchedule[ksRow]; t1 = invSubMix0[s1 >>> 24] ^ invSubMix1[(s2 >> 16) & 0xff] ^ invSubMix2[(s3 >> 8) & 0xff] ^ invSubMix3[s0 & 0xff] ^ invKeySchedule[ksRow + 1]; t2 = invSubMix0[s2 >>> 24] ^ invSubMix1[(s3 >> 16) & 0xff] ^ invSubMix2[(s0 >> 8) & 0xff] ^ invSubMix3[s1 & 0xff] ^ invKeySchedule[ksRow + 2]; t3 = invSubMix0[s3 >>> 24] ^ invSubMix1[(s0 >> 16) & 0xff] ^ invSubMix2[(s1 >> 8) & 0xff] ^ invSubMix3[s2 & 0xff] ^ invKeySchedule[ksRow + 3]; // Update state s0 = t0; s1 = t1; s2 = t2; s3 = t3; ksRow = ksRow + 4; } // Shift rows, sub bytes, add round key t0 = (invSBOX[s0 >>> 24] << 24) ^ (invSBOX[(s1 >> 16) & 0xff] << 16) ^ (invSBOX[(s2 >> 8) & 0xff] << 8) ^ invSBOX[s3 & 0xff] ^ invKeySchedule[ksRow]; t1 = (invSBOX[s1 >>> 24] << 24) ^ (invSBOX[(s2 >> 16) & 0xff] << 16) ^ (invSBOX[(s3 >> 8) & 0xff] << 8) ^ invSBOX[s0 & 0xff] ^ invKeySchedule[ksRow + 1]; t2 = (invSBOX[s2 >>> 24] << 24) ^ (invSBOX[(s3 >> 16) & 0xff] << 16) ^ (invSBOX[(s0 >> 8) & 0xff] << 8) ^ invSBOX[s1 & 0xff] ^ invKeySchedule[ksRow + 2]; t3 = (invSBOX[s3 >>> 24] << 24) ^ (invSBOX[(s0 >> 16) & 0xff] << 16) ^ (invSBOX[(s1 >> 8) & 0xff] << 8) ^ invSBOX[s2 & 0xff] ^ invKeySchedule[ksRow + 3]; // Write outputInt32[offset] = swapWord(t0 ^ initVector0); outputInt32[offset + 1] = swapWord(t3 ^ initVector1); outputInt32[offset + 2] = swapWord(t2 ^ initVector2); outputInt32[offset + 3] = swapWord(t1 ^ initVector3); // reset initVector to last 4 unsigned int initVector0 = inputWords0; initVector1 = inputWords1; initVector2 = inputWords2; initVector3 = inputWords3; offset = offset + 4; } return outputInt32.buffer; } }